
Hierarchy-based Partition Models: Using Classification Hierarchies to
Improve the Statistical Estimation of Bigrams

Matthias Buch-Kromann and Martin Haulrich
Center for Research in Translation and Translation Technology

Copenhagen Business School
mbk.isv@cbs.dk, mwh.isv@cbs.dk

Working paper

Abstract

We propose a novel machine learning
technique that can be used to estimate
probability distributions for categorical
random variables that are equipped with
a natural set of classification hierarchies,
such as words equipped with word class
hierarchies, wordnet hierarchies, and suf-
fix and affix hierarchies. We evaluate the
estimator on bigram language modelling
with a hierarchy based on word suffixes,
using English, Danish, and Finnish data
from the Europarl corpus with training sets
of up to 1–1.5 million words. The results
show that the proposed estimator outper-
forms modified Kneser-Ney smoothing in
terms of perplexity on unseen data. This
suggests that important information is hid-
den in the classification hierarchies that we
routinely use in computational linguistics,
but that we are unable to utilize this infor-
mation fully because our current statisti-
cal techniques are either based on simple
counting models or designed for sample
spaces with a distance metric, rather than
sample spaces with a non-metric topology
given by a classification hierarchy.

Keywords: machine learning; categorical
variables; classification hierarchies; lan-
guage modelling; statistical estimation

1 Introduction

The notion of smoothing plays a central role in
most statistical approaches to natural language
processing, and many of the most important tech-
niques in statistics and machine learning can be
viewed as instances of smoothing. Smoothing is
based on the idea that if we observe an event,
then this should increase our belief in observing
this particular event and similar events again in

the future. The different smoothing techniques
mainly differ with respect to their underlying no-
tion of similarity. When the sample space has a
natural interpretation as a metric space, similar-
ity is naturally defined in terms of metric distance:
points in the sample space are similar if they are
close to each other. This distance-based notion
of similarity is the starting point for a wide array
of statistical estimation methods, including gen-
eralized linear models, support vector machines,
kernel smoothing, and k-nearest neighbour meth-
ods (see Hastie et al. (2009) for an overview).
The options are more limited when the sample
space does not have a natural metric, eg, when the
data are categorical rather than real-valued. One
standard technique is to map the categorical sam-
ple space to a high-dimensional metric space by
means of feature functions, thereby imposing a
metric on the categorical space which allows us
to apply generalized linear models, support vec-
tor machines, and other distance-based estimators
to the categorical data. Although this often pro-
duces excellent results, each feature corresponds
to a separate dimension, and the high dimension-
ality of the resulting metric space can make it dif-
ficult to model higher-order interactions between
the features; moreover, the topology of the result-
ing metric space may not necessarily correspond
to any intuitively plausible notion of similarity
in the untransformed categorical space. Feature-
based techniques do therefore not always produce
optimal results.

Another standard technique is to apply sim-
ple counting models to the untransformed data,
eg, by ordering the dimensions in the categor-
ical sample space with respect to their impor-
tance, and smoothing higher-order models with
lower-order models that ignore the least impor-
tant dimensions. This approach is particularly
suited to problems like n-gram language mod-
elling where the sample space is extremely large

and the interactions between the dimensions are
highly non-linear. Interpolated n-gram models
such as Kneser-Ney smoothing (Kneser and Ney,
1995) are instances of this approach (see Chen and
Goodman (1998) and Goodman (2001) for a com-
prehensive overview of state-of-the-art language
modelling techniques).

In this paper, we will present an alternative den-
sity estimation technique extending a proposal by
Buch-Kromann (2006) that can be used to estimate
joint and conditional probabilities for categorical
random variables by correcting an initial estima-
tor. The method resembles count-based meth-
ods by working on the untransformed categorical
data, but uses classification hierarchies to provide
a more fine-grained notion of similarity than n-
gram hierarchies or the metrics produced by fea-
ture transformations. We evaluate our estimator
on bigram language modelling for English, Dan-
ish, and Finnish with a primitive suffix hierarchy,
and show that the estimator performs well com-
pared to Kneser-Ney smoothing, ie, even a primi-
tive suffix hierarchy can provide information that
can be used to construct improved estimators. Fi-
nally, we will discuss the potential ramifications of
classification hierarchies in statistical natural lan-
guage processing in general.

2 Classification Hierarchies

Classification hierarchies arise naturally in a wide
range of categorical data where it is difficult to de-
fine a natural notion of a distance metric. Some
prominent examples include the taxonomies used
in biological classification, the universal classifi-
cation systems used by libraries to classify books,
and the industrial classification systems used by
governments to classify industries. In natural lan-
guage processing, examples of classification hier-
archies for words include word class hierarchies,
inflectional hierarchies, and ontological hierar-
chies such as WordNet (Fellbaum, 1998); word
suffixes and word prefixes can be used to define
natural hierarchies for words as well. In this ar-
ticle, we will focus exclusively on suffix hierar-
chies for bigram language modelling in statistical
natural language processing, but the usefulness of
our proposed estimation method is not restricted
to bigram language modelling or statistical nat-
ural language processing, but applies readily to
other kinds of hierarchies and other problem areas
as well. Our main reason for focusing on suffix

hierarchies in this paper is that they do not pro-
vide any information beyond the information that
is encoded in the text itself, without any additional
lexical resources, and therefore allow for a more
“pure” model comparison with standard methods
in statistical language modelling, such as Kneser-
Ney smoothing.

Although suffixes are not rich from a linguistic
point of view, they are used to encode morpho-
logical markers in many languages, and do allow
us to capture generalizations that cannot be cap-
tured by means of full word sequences. For ex-
ample, if we use suffix classes for smoothing, we
can potentially predict that the sequence “Mon-
day evening” has a higher probability than the se-
quence “evening Monday”, even if both sequences
are unseen in the training data. This can happen
if the training data contain instances of “Tuesday
morning” and “Friday evening,” which would re-
sult in an increased probability for sequences of
the form “•day •ning”, where “•” represents an
arbitrary character sequence within a single to-
ken. In contrast, word-based smoothing methods
such as Kneser-Ney would treat these sequences as
completely unseen, fall back on unigram probabil-
ities, and predict the same probability for both se-
quences. Figure 1 shows a partial suffix hierarchy
for bigrams, with examples of matching bigrams
at terminal nodes.

In formal terms, we define a classification hi-
erarchy on a sample space Ω as any collection H
of subsets of Ω which is closed under intersection
and contains Ω and ∅. We will refer to the ele-
ments of H as classes, and we will assume that
every class in H is given a unique name that de-
notes the class — in particular, the top class Ω is
denoted by >, and the empty class ∅ is denoted by
⊥. The maximal proper subclasses of a class are
called its immediate subclasses, and the depth of
a class is defined as the length of the shortest path
from > to the class via immediate subclasses. It is
an important property of these hierarchies that we
can construct new hierarchies from existing hier-
archies by means of Cartesian products: ie, given
any two hierarchies H,H ′ for Ω,Ω′, the product
set H ×H ′ defines a natural product hierarchy on
Ω× Ω′.

3 Hierarchy-based Partition Models

We can now state our estimation problem in for-
mal terms and define our notion of Hierarchy-

(•,•)

(•,•s)

(•e,•s)

(he,runs) (bee,hives)

(•an,•ks)

(than,tasks) (woman,walks)

(•y,•l)

(they,will)

(they, will)

(•tay,•ell)

(stay, well)

Figure 1: A partial suffix hierarchy for bigrams.

based Partition Models (HPMs). Let X be a ran-
dom variable with sample space ΩX and true dis-
tribution FX .1 Our goal is to compute an estimate
F̂ of FX given a set x̄ = (x1, . . . , xn) of i.i.d. ob-
servations of X , a background distribution F̃ that
provides an initial estimate of FX , and a classi-
fication hierarchy HX whose classes are measur-
able with respect to F̃ (ie, they have a well-defined
probability).

The intuition behind our setup is that we com-
pute F̂ as a correction estimator that examines
whether there are regions of ΩX (as defined by
the hierarchy HX) that contain more observations
than would be expected with the background dis-
tribution F̃ ; if so, the probability mass assigned
to these regions will be adjusted upwards, and the
probability mass assigned to the remaining regions
will be adjusted correspondingly downwards. In
hierarchy-based partition models, we attempt to
circumvent the sparse data problem by adjusting
the probability of entire regions rather than indi-
vidual sample points, and falling back on the back-
ground estimator in order to estimate the proba-
bility of the individual sample points within a re-
gion. The background estimator functions as our
initial estimator, and is typically based on a sim-
pler model with smaller variance but larger bias
which assumes independence between some of the
dimensions in ΩX , and therefore fails to model
their interactions.

The intuition behind our correction estimator is
illustrated in Figure 2, which shows how the den-
sity estimate is improved by incrementally subdi-
viding the sample space into smaller regions. Ini-
tially, the sample space is viewed as a single re-
gion by our estimator, and the background distri-

1We formally define a distribution as a probability mea-
sure on a measurable space over a sample space Ω, cf. Hal-
mos (1974).

bution is used without modification (step 0). In
step 1, we cut out a region c1 with a higher prob-
ability than expected under the background distri-
bution, and similarly with the regions c11 and c12

in steps 2 and 3. The remaining part of c1 after cut-
ting out c11 and c12 now fails to have significantly
higher probability than the rest of the original sam-
ple space >, and we therefore merge it with > by
means of a special “ghosting” operation in step 4.
In step 5, we identify a new high-probability re-
gion c2 of the rest space associated with >, some
of which has been cut out by the region c12, and
adjust the probabilities upwards in c2. The parti-
tioning and ghosting operations are explained in
more detail in section 5.

Formally, the regions used for partitioning the
sample space in our hierarchy-based partition
models are defined by means of ordered covers.
An ordered cover on HX is a sequence of classes
in HX of the form o = (c1, . . . , cn) where cn
equals the top class >. The kth partition in o cor-
responds to the subset πk = ck − c1 ∪ . . .∪ ck−1

of ΩX . Obviously, the partitions in o are disjoint
with union ΩX . By an abuse of notation, we write
o(x) = k if x ∈ πk and refer to o(x) as the par-
tition index of x in o; the definition of πk implies
that o(x) coincides with the smallest k such that
x ∈ ck.

Given an ordered cover o and a set of partition
weights λ, we formally define the hierarchy-based
partition model F̂o,λ as the distribution given by:

F̂o,λ(s) :=
n∑
k=1

λkF̃ (s∩πk) (1)

where s is any measurable subset of ΩX , and
where the partition weights λ = (λ1, . . . , λn) are
chosen so that F̂o,λ(>) = 1 and λk ≥ 0 for
all k. Conditional probabilities can be computed
straight-forwardly from the joint distribution by

means of:

F̂o,λ(s|s′) =
F̂o,λ(s∩ s′)
F̂o,λ(s′)

. (2)

For a specific outcome x, we observe that x be-
longs to the unique partition o(x), so that the prob-
ability (1) above reduces to the special case:

F̂o,λ(x) = λo(x)F̃ (x). (3)

The computation of F̂o,λ(x) for a single data point
x therefore includes two main steps: computing
the partition index of x, and evaluating the back-
ground distribution on x. The partition index
could be computed by searching the classes in the
ordered cover sequentially from left to right. How-
ever, for large ordered covers, the computational
cost of a linear search through the ordered cover
would be prohibitive in practice. Fortunately, we
can make the search much more efficient by im-
posing a tree structure on the partitions in the or-
dered cover, and if the tree is restricted so that the
nodes in the tree have a bounded number of chil-
dren and the tree is approximately balanced (i.e.,
the height is O(log |o|)), the time complexity of
the search will drop from linearO(|o|) to logarith-
mic O(log |o|), a quite significant improvement
from a computational point of view.

For this reason, we will define an ordered cover
o as an ordered tree cover if the classes in o are or-
ganized in a tree structure that is compatible with
the class hierarchy and the ordered cover, ie, o has
root partition root(o) = |o| = n, the kth partition
has parent partition park(o) > k and ordered chil-
dren chik(o), the class ck is always a subclass of
cpark , and the linear order of the nodes in o corre-
sponds to a post-order walk through the tree struc-
ture. As a notational convenience, we will fre-
quently omit the ordered cover and write for ex-
ample park rather than park(o) if the ordered cover
is clear from the context.

In order to speed up the search through the or-
dered tree cover even more, we will allow the
ordered tree cover to contain ghost partitions in
which ck =

⋃
i∈chik ci so that πk equals the empty

set (ie, the entire region corresponding to ck has
been cut out by the child partitions in chik). We
will assume that ghost partitions have an associ-
ated ghost class cghost

k which must be a superclass
of ck and a subclass of cpark ; for non-ghost par-
titions, we assume cghost

k = ck. Although ghost-
partitions are empty and therefore do not have

Input: tree cover o, observation x, partition k.
Output: partition in subtree k containing x,

or null.

foreach i ∈ chik do
if x ∈ cghost

i then
match := PartitionIndex(x, i);
if match 6= null then

return match;

if k is a ghost partition then
return null;

else
return k;

Algorithm 1: PartitionIndex(o, x, k)

any effect on the probabilities assigned by the
hierarchy-based partition model, a ghost partition
speeds up the computation of the partition index
for outcome x by providing a convenient way of
grouping its children into a subtree which can be
pruned away in a single step if x 6∈ cghost

k . The
algorithm for computing the partition index with
ghost partitions is given in Algorithm 1, with the
partition index PartitionIndex(o, x) for x in o com-
puted as PartitionIndex(o, x, |o|).

In the rest of the paper, we let subk(o) denote
the set of all transitive child partitions in the sub-
tree corresponding to partition k, defined recur-
sively by:

subk(o) := chik ∪
⋃
i∈chik

subi.

We let prek(o) := {1, . . . , k− 1} denote the set of
partitions that precede partition k in o, and we let
premax

k (o) denote the maximal partitions in prek,
defined by:

premax
k := prek −

⋃
i∈prek

subi.

4 Estimating partition weights

We now turn to the problem of estimating a set
of partition weights for a Hierarchy-based Parti-
tion Model from a data set, given a background
distribution and an ordered cover. Ie, we want
to estimate partition weights λ for a Hierarchy-
Based Partition Model F̂o,λ(X) given an ordered
cover o and observed data x̄. In the following,

we let x̄k(o) := x̄∩πk(o) denote the observa-
tions in x̄ that fall within partition k, and we let
x̄tree
k (o) := x̄∩πtree

k (o) denote the set of observa-
tions in x̄ that fall within subtree k.

When estimating partition weights, the simplest
solution is to estimate the probability of a partition
by the empirical probability that an observation
in the data set falls within the partition. That is,
we can simply use the empirical partition weight
λ

emp,x̄
k for partition k given by:

λ
emp,x̄
k :=

|x̄k|
|x̄|
· 1

F̃ (πk)

Unfortunately, this approach can be expected to
lead to overfitting when data are sparse and the
individual partitions contain only very few obser-
vations. To circumvent the problem, we can fol-
low standard methodology and use a smoothed set
of partition weights. The smoothing problem has
been studied extensively in the context of language
modelling (see Chen and Goodman (1998)), and
the consistently best results have been obtained
with smoothing methods based on absolute dis-
counting, where a fixed pseudocount is subtracted
from the observed count and distributed among the
unobserved outcomes (Ney et al., 1994). We will
therefore produce a smoothed estimate of the par-
tition weights by assuming that subtree k passes
on the absolute discount Dtree,x̄

k (o) := D(|x̄tree
k |)

to its parent subtree, and that partition k con-
tributes with discount Dx̄

k(o) := D(|x̄k|) to sub-
tree k, where D is a non-decreasing concave dis-
counting function with 0 ≤ D(n) ≤ n. The dis-
counted partition weights λdisc,x̄

k (o) are then com-
puted as follows.

Define the inherited interpolation mass inhx̄k(o)
that subtree k inherits from its parent by:

inhx̄k := intx̄park
·
F̃ (πtree

k)

F̃ (πtree
park

)

Define the total interpolation mass intx̄k(o) for sub-
tree k as the interpolation mass inherited from the
parent tree plus the absolute discounts from its
child subtrees and partition k, minus the discount
that the subtree passes on to its parent subtree, ie,
as the quantity:

intx̄k := inhx̄k −D
tree,x̄
k +Dx̄

k +
∑
i∈chik

Dtree,x̄
i

Note that the interpolation mass is always non-
negative because the concavity of the discounting

function ensures that the sum of the incoming and
outgoing discounts is non-negative.

Finally define the pseudo-count pseux̄k(o) for
partition k by:

pseux̄k := |x̄k| −Dx̄
k + intx̄k ·

F̃ (πk)

F̃ (πtree
k)

Using absolute disconting, we can now define
a discounted partition weight λdisc,x̄

k (o) for non-
ghost partition k by:

λdisc,x̄
k :=

pseux̄k
|x̄|

· 1

F̃ (πk)
(4)

This definition only works for non-ghost partitions
where F̃ (πk) is non-zero, so for completeness,
we let ghost partitions inherit the partition weight
from their parent partition by formally defining
their partition weight as λdisc,x̄

k := λdisc,x̄
park . Since

ghost partitions are always empty, their partition
weight does not have any practical significance in
the computation of joint and conditional probabili-
ties. But it is convenient to have a partition weight
for ghost partitions also, since that will allow us to
determine whether a partition represents a bump or
a dip, in the terminology of Friedman and Fisher
(1999) — ie, whether it has higher or lower weight
than its parent partition. In general, since observa-
tions are concentrated in bumps rather than dips,
partition weights associated with bumps can be es-
timated more reliably than partition weights asso-
ciated with dips, especially if the data are sparse.
For this reason, we will say that a partition is de-
generate if λk ≤ λpark , and prune away all de-
generate partitions in the ordered covers that we
produce.

5 Model induction

So far, we have only described how to induce a
set of smoothed partition weights from a data set
given a specific ordered cover. Since it is obvi-
ously impossible to specify a good ordered cover a
priori, we will now turn to the problem of inducing
ordered covers as well. As before, we assume we
are given a dataset x̄. Since we can compute a set
of smoothed partition weights λ(o) := λdisc,x̄(o)
for any ordered cover o, any choice of ordered
cover induces a hierarchy-based partition model
F̂o,λ(o). Finding the best model for a given data
set therefore reduces to a search for the best or-
dered cover with respect to some model scoring

criterion, such as penalized likelihood. We will
construct the cover by means of three basic oper-
ations — partitioning, merging, and ghosting —
which are closely related to the tree splitting and
pruning operations in classification and regression
trees (Breiman et al., 1984; Ripley, 1996).

The partition operation splits an existing par-
tition k into two by cutting out a subclass s, ie,
it divides the partition πk into the disjoint subsets
πk ∩ s and πk − s where s is some subclass of the
partitioned class ck. The new cover produced by
applying the partitioning operation to the old cover
cn1 = (c1, . . . , cn) is given by the concatenation:

partk(c
n
1 , s) := ck−1

1 .s.cnk (partitioning)

ie, the partitioning results in the ordered cover
(c1, . . . , ck−1, s, ck, . . . , cn). We refer to the depth
of s relative to ck as the depth of the partitioning
operation.

The merge operation deletes a partition from the
cover and merges it into the subsequent partitions
in the parent tree. The new cover produced by
merging partition k (with k 6= n) in the ordered
cover on1 is given by:

mergek(c
n
1) := ck−1

1 .cnk+1 (merging)

ie, the merging results in the ordered cover
(c1, . . . , ck−1, ck+1, . . . , cn), where park becomes
the new parent for the child partitions in chik.

The ghost operation can be viewed as a special
instance of merging, in which the merged parti-
tion is replaced with the empty class ⊥, but is re-
tained in the tree structure as a ghost partition in
order to make the computation of the partition in-
dex more efficient, as explained in section 3. The
new cover produced by ghosting partition k in the
ordered cover cn1 is given by:

ghostk(c
n
1) := ck−1

1 . ⊥ck .cnk+1 (ghosting)

where ⊥c denotes the empty class annotated with
ghost class c, ie, the ghosting results in the or-
dered cover (c1, . . . , ck−1, ⊥ck , ck+1, . . . , cn). It
is easy to prove that any ordered tree cover can be
produced from the trivial cover (>) by applying
a sequence of partitioning, merging, and ghosting
operations, even if the partitioning operations are
restricted to depth 1. Figure 2 shown previously on
page 4 illustrates how ordered covers can be con-
structed by means of sequences of partitionings,
mergings, and ghostings.

Input: ordered tree cover o, partition node k
in o, observations x̄k.

Output: ordered tree cover bestCover

bestCover := o;
bestScore := score of o;
repeat

lastCover := bestCover;
foreach s among the biggest transitive
subclasses of ck with respect to
x̄k(lastCover) down to fixed depth do

newCover := partk(lastCover, s);
newScore := score of newCover;
if newCover is non-degenerate and
newScore > bestScore then

bestScore := newScore;
bestCover := newCover;

if lastCover 6= bestCover then
p := new partition in bestCover;
bestCover :=
FindCover(bestCover, p, x̄p(bestCover));

until bestCover = lastCover ;
if |x̄k| < minimum partition size then

bestCover := ghostk(bestCover);
return bestCover;

Algorithm 2: FindCover(o, k, x̄k)

Our algorithm for finding an ordered tree cover
is listed in Algorithm 2. The search is performed
in a greedy depth-first manner starting from the
root partition in the trivial cover (>), and proceeds
by recursively partitioning and ghosting partitions
in the cover until we are unable to improve the
score any further. The depth-first order is an ad-
vantage because it guarantees that we do not need
to recalculate partition weights to the left of the
current partition when new partitions are created.
The algorithm expands a partition k by computing
the m subclasses of ck with the largest data count
down to a certain depth, and attempting a parti-
tioning with each subclass. The subclass that re-
sults in the best score is then chosen for recursive
partitioning, and the procedure is repeated until no
more improvements can be found. The minimum
partition size and the maximal partitioning depth
are training parameters. The only limitation in the
search is that we do not allow partitions to be de-
generate (ie, to have lower partition weight than
their parent partition), and that we ghost partitions

whose data counts fall below the required mini-
mum partition size.

To illustrate the FindCover algorithm, we now
describe the actions taken by the algorithm in the
construction of the ordered cover shown in Figure
2. Initially, we call the algorithm on the root parti-
tion in the trivial cover (>). The algorithm exam-
ines a number of possible partitionings of >, and
chooses c1 as the best one (step 1). The algorithm
is applied recursively to c1, which leads to a parti-
tioning of c1 with c11 (step 2). The algorithm can-
not find any improvements by partitioning c11, and
therefore moves back to c1 and performs a second
partitioning of c1 with c12 (step 3). Afterwards, it
ghosts c1 because it has become degenerate (step
4). Finally, the algorithm moves back to > and
performs a second partitioning with c2 (step 5).

For efficiency reasons, our current implementa-
tion of the FindCover algorithm does not imme-
diately recalculate the interpolation mass for all
existing child partitions whenever we split off a
new subpartition, but only recalculates the inter-
polated mass and partition weights when we have
arrived at a locally optimal cover. This means that
the cover returned by FindCover may turn out to
be degenerate, and for this reason, a call to Find-
Cover is always followed by a sanitization op-
eration which runs through the cover and ghosts
or merges degenerate partitions. By reducing the
number of partitions and gathering data points, the
sanitization operation may open up the possibility
for further partitioning. In our current implemen-
tation, we therefore rerun the FindCover algorithm
after the sanitization operation, and repeat this cy-
cle a small number of times. But the resulting im-
provements tend to be rather minor.

There are several possible choices of model
scoring criterion. In the experiments, we have
chosen to minimize the Bayesian Information Cri-
terion (Schwarz, 1978) with an added penalty
weight α:

BICα(F̂o,λ|x̄) := −2 lnL(F̂o,λ|x̄) + α|o| ln |x̄|

where L(F̂o,λ|x̄) :=
∏
x∈x̄ F̂o,λ(x) is the likeli-

hood function, |x̄| is the number of observations
in x̄, and |o| is the number of free parameters in
the model (one parameter for the cover size, and
|o|−1 parameters for the partition weights). BIC1

corresponds to standard BIC, whereas BIC0 corre-
sponds to maximum likelihood estimation.

6 Experiments

We now present the experiments we have per-
formed in order to evaluate the performance of
hierarchy-based partition models (HPMs) as den-
sity estimators. HPMs can be used to estimate
joint and conditional densities for a wide range
of estimation problems, including classification
and reasonably low-dimensional categorical esti-
mation problems. In this paper, we have chosen
to focus on the estimation of bigram probabilities
of the form P (wn|wn−1) where wn−1 and wn are
adjacent words in a text. Bigram estimation is
interesting in terms of model evaluation because
the sample space is large enough to lead to se-
vere sparse data problems, even though the sample
space is merely two-dimensional. Moreover, the
problem is well understood with well-established
state-of-the-art methods and easy access to large
quantities of data. In the following, we describe
the classification hierarchies, data, and evaluation
measure we have used, and report the results of
each of the four experiments.

6.1 Bigram data
As our data sets, we used the Europarl texts
(Koehn, 2005) for English, Danish, and Finnish,
three languages with varying degrees of morpho-
logical complexity. For each language, we con-
structed three bigram datasets by extracting all bi-
grams from the first 1,000, 10,000, and 100,000
lines of text in random order. For each bigram data
set, we used the first 80% as our training set, and
reserved 10% as a development set and 10% as an
evaluation set. Table 1 shows the number of tokens
and unique words in each of the data sets. The size
of the data sets in our experiments was mainly lim-
ited by the time and memory requirements of our
current HPM implementation.

6.2 Evaluation measure
The HPM models were evaluated by comput-
ing the perplexity of the unseen evaluation data,
using modified Kneser-Ney smoothing (MKN)
trained with SRILM (Stolcke, 2002) as our base-
line. The perplexity of MKN is calculated by
SRILM, whereas the perplexity of HPM is calcu-
lated by our own program. The program can read
ARPA-format language model files, and we have
verified that it returns the same perplexity scores
as SRILM. We have also excluded the possibility of
deficient HPM models by verifying that the prob-

English Danish Finnish
1k 10k 100k 1k 10k 100k 1k 10k 100k

Training 15 148 1,446 14 136 1,343 10 104 1,017
Evaluation 2 19 180 2 16 164 1 12 125
Unique words 4 19 65 5 23 100 5 34 172

Table 1: The number of bigrams in the training and evaluation sets and the number of unique words (in
thousands).

ability assigned to (>,>) was consistently equal
to 1 in our experiments.

6.3 Implementation
Our implementation of Hierarchy-Based Partition
Models was created in Java, and released under
an open-source license (HPM, 2009). The exper-
iments were performed on a Linux server with 4
CPUs and 8GB RAM, and lasted up to several
days for the largest datasets. The current imple-
mentation has not been optimized with respect to
processing time and memory use, and we have
a number of ideas for further optimization. It is
quite likely that these optimizations will lead to
significant improvements in terms of both process-
ing time, memory use, the size of the datasets, and
the number of dimensions that can be handled by
algorithm.

6.4 Classification hierarchies
We used a word suffix hierarchy as our hierarchy
for unigrams, and a product word suffix hierar-
chy as our hierarchy for bigrams. Although we
could have used Wordnet or any word class hi-
erarchy instead, we chose to focus on word suf-
fix hierarchies in our experiments because they do
not contain any information which is not present
in the text itself. This makes it easier to compare
our method with state-of-the-art language mod-
els such as modified Kneser-Ney smoothing (Chen
and Goodman, 1998).

6.5 Background distribution
We constructed two unigram estimators on the ba-
sis of the unigrams in the training data: for the
predicted word, we used the empirical distribu-
tion of word suffixes; for the preceding word, we
used an empirical distribution smoothed with 1

n -
add smoothing where n was the number of unique
words in the training set. As our background dis-
tribution, we used the product of the two unigram
distributions, ie, our background distribution as-
sumes the two words are independent. The choice

of unigram distributions ensures that we get zero
probabilities for exactly the same bigrams as the
MKN baseline.2

6.6 Experiment 1: HPM vs Kneser-Ney
In order to determine how HPM compares with
modified Kneser-Ney smoothing, we compared
HPM with MKN on the three English, Danish, and
Finnish bigram datasets. In all four experiments,
we did not compute the optimal absolute discounts
for HPM, but simply reused the absolute discounts
computed by SRLIM for MKN. The other HPM
model parameters were set to the values that pro-
duced the best results in other experiments, ie,
minimum partition size 2 and BIC weight 0 (cor-
responding to maximum likelihood estimation). In
Experiment 1, we restricted the partitioning search
in the FindCover algorithm to the 20 largest sub-
classes down to depth 10. In Experiments 2-4, we
used the 10 largest subclasses down to depth 10.

Tables 2–4 show the perplexities of the HPM
and MKN models with respect to prediction (eval-
uation set) and goodness-of-fit (training set). The
prediction data show that HPM outperforms MKN
in all cases. Of the three languages, English
has the simplest morphology, and Finnish the
most complex, and the improvement in perplex-
ity clearly correlates with the morphological com-
plexity of the language. This is no surprise, since
morphologically rich languages have a larger vo-
cabulary than languages with little morphology,
and the potential benefit of using word suffixes
rather than whole words is therefore larger for
morphologically rich languages. This observation
probably also explains why the HPM improve-
ment is slightly bigger on smaller data sets, where

2In Kneser-Ney smoothing, the lower-order Kneser-Ney
model has been shown to result in better estimates of
marginal probabilities than the empirical distribution (Good-
man, 2002). It is quite conceivable that a similar result might
hold for the choice of background distribution in Hierarchy-
based Partition Models. However, we have not yet tried
replacing our background distribution with a lower-order
Kneser-Ney model instead of the empirical distribution.

English
1k 10k 100k

Prediction MKN 132.47 164.29 145.61
Prediction HPM 123.15 155.50 143.66
Goodness-of-fit MKN 34.86 56.01 77.83
Goodness-of-fit HPM 107.08 119.18 118.27
HPM cover size 3,583 30,278 160,229

Table 2: Perplexity wrt. prediction and goodness-of-fit, and HPM cover size (Experiment 1, English).

Danish
1k 10k 100k

Prediction MKN 153.17 191.87 189.49
Prediction HPM 130.54 167.20 174.42
Goodness-of-fit MKN 37.83 61.08 89.54
Goodness-of-fit HPM 124.28 152.85 —
HPM cover size 3,502 25,573 170,575

Table 3: Perplexity wrt. prediction and goodness-of-fit, and HPM cover size (Experiment 1, Danish).

Finnish
1k 10k 100k

Prediction MKN 292.81 585.38 754.46
Prediction HPM 196.91 423.99 576.96
Goodness-of-fit MKN 45.95 59.92 104.97
Goodness-of-fit HPM 247.75 431.53 —
HPM cover size 2,787 25,600 217,072

Table 4: Perplexity wrt. prediction and goodness-of-fit, and HPM cover size (Experiment 1, Finnish).

the data are more sparse. Finally, we observe that
MKN tends to provide a better fit to the training
data than HPM, as evidenced by the goodness-of-
fit data, which coupled with the better prediction in
HPM models suggests that HPM models are less
prone to overfitting than MKN.

6.7 Experiment 2: absolute discounting
In order to determine how absolute discounting af-
fects HPM, we reran the HPM experiments with-
out absolute discounting. Table 5 shows the per-
plexity scores for Danish with 1k and 10k lines of
text.3 Without absolute discounting, the HPM per-
plexity improvements relative to MKN disappear,
which suggests that HPM tends to overfit when ab-
solute discounting is turned off.

3For time reasons, we only conducted Experiments 2–4
for Danish (the middle language wrt. morphological com-
plexity) with 1k and 10k lines of text. The complete set of
results will be included in the final paper.

1k 10k
HPM –discounting 149.82 188.58
HPM +discounting 132.67 167.56
MKN 153.17 191.87

Table 5: How absolute discounting affects HPM
perplexity in prediction (Exp. 2 for Danish).

6.8 Experiment 3: minimum partition size
In order to determine how minimum partition size
affects HPM, we repeated the HPM experiments
with minimum partition sizes 1, 2, and 3. Table
6 shows the perplexity scores for Danish with 1k
and 10k lines of text. The HPM estimator seems to
underfit with minimum partition size 3, but over-
fits with minimum partition size 1, which makes
a minimum partition size of 2 the optimal choice.
The minimum partition size also affects the train-
ing time heavily, which is not surprising since a
bigram with n letters in one word and m letters

1k 10k
HPM mps=1 137.35 329.32
HPM mps=2 132.68 167.56
HPM mps=3 150.53 180.22
MKN 153.17 191.87

Table 6: How minimum partition size affects HPM
perplexity in prediction (Exp. 3 for Danish).

1k 10k
HPM bic=1 145.17 190.79
HPM bic=0.5 143.16 187.02
HPM bic=0.25 141.09 183.36
HPM bic=0.1 138.35 178.68
HPM bic=0 132.68 167.56
MKN 153.17 191.87

Table 7: How BIC penalty weights affect HPM
perplexity in prediction (Exp. 4 for Danish).

in the other leads to nm possible partitions when
the partition size is 1. So for each bigram that oc-
curs only once, a large number of partitions can be
excluded from the search space when increasing
the partition size from 1 to 2, although the search
depth mitigates this problem to some extent.

6.9 Experiment 4: BIC penalty weights
In order to determine how the BIC penalty weights
affect HPM, we repeated the HPM experiments
with BIC penalties 0, 0.1, 0.25, 0.5, 1 for HPM
with absolute discounting. Table 7 shows the per-
plexity scores for Danish with 1k and 10k lines of
text. The experiments show that BIC tends to un-
derfit the data. Without absolute discounting (not
shown), the optimal choice of BIC penalty is 0.5
and 0.25 for 1k and 10k lines of text, respectively,
but the improvement over the maximum likelihood
estimate is relatively small. This suggests that
BIC penalizes free parameters too heavily, and that
we should explore model selection criteria that
place a smaller penalty on free parameters, such as
the Akaike Information Criterion (Akaike, 1974)
or modern versions of the Minimum Description
Length Principle (Grünwald, 2007).

7 Discussion

For language modelling, the problem we have cho-
sen for evaluating our estimator in this paper, the

experiments show that HPM consistently outper-
foms modified Kneser-Ney when applied to bi-
grams with text sizes up to one million words.
The experiments also show that the proper choice
of minimum partition size and absolute discount-
ing parameters is quite important. This suggests
that HPM performance could be improved by
computing optimal HPM discounting parameters
from held-out data, instead of reusing the modi-
fied Kneser-Ney parameters computed by SRILM.

8 Related work

HPMs are closely related to classification and re-
gression trees (Breiman et al., 1984), probabilistic
decision lists (Yarowsky, 2000; Goodman, 2002),
and the tree-based estimation approach proposed
by (Li and Abe, 1998). It differs from these ap-
proaches by being a correction density estimator,
and by using a very general notion of classification
hierarchies to identify regions of similar outcomes
in the sample space. HPMs borrow important
ideas from language modelling, such as absolute
discounting (Ney et al., 1994). Moreover, since
our specific implementation of HPMs for language
modelling are based on suffix sequences rather
than whole word sequences, and since HPM suffix
hierarchies can be viewed as primitive clustering
models, our language modelling HPMs resemble
skipping models (Rosenfeld, 2000; Huang et al.,
1993; Ney et al., 1994) and clustering models
(Brown et al., 1992; Ney et al., 1994; Goodman,
2001) in important respects. Determining how
ideas from these approaches can be used to im-
prove HPM estimation in general, and how HPM
estimation compares with these approaches when
applied to language modelling and other problem
areas in natural language processing and statistics,
is an important topic for future research.

9 Conclusion

We have proposed hierarchy-based partition mod-
els as a new correction-based machine learning
method for categorical data with associated classi-
fication hierarchies, and evaluated the new model
in a series of experiments with bigram data sets.
The experiments demonstrate that HPM consis-
tently outperforms modified Kneser-Ney smooth-
ing, ie, they show that there are statistical estima-
tion problems for which HPM may be a useful al-
ternative to other methods, and that classification
hierarchies can provide useful information about

the structure of a categorical sample space.
The main finding in this paper, in our view, is

that existing state-of-the-art techniques in statisti-
cal natural language processing, or at least some
areas of it, can be improved by exploiting the in-
formation that is hidden in the classification hi-
erarchies that we construct routinely in linguis-
tics and computational linguistics, but are unable
to utilize fully with the statistical estimators that
we normally use. In order to release this po-
tential, we need a new set of statistical methods
that can exploit classification hierarchies directly,
rather than falling back on count-based methods or
feature transformations to metric spaces that have
no natural interpretation in the underlying categor-
ical sample spaces. The methods presented in this
paper are not a final solution to this problem, but
rather one possible first step in this direction.

10 Future work

The idea of using classification hierarchies in sta-
tistical estimation is relatively unexplored in both
statistics and natural language processing, and
there are a lot of unsolved problems in our cur-
rent account of Hierarchy-Based Partition Mod-
els. From a statistical point of view, the quality
of the HPM estimates can probably be improved
by incorporating ideas from related approaches,
such as cost-complexity pruning in classification
and regression trees (Breiman et al., 1984; Rip-
ley, 1996) and the controlled marginals in Kneser-
Ney smoothing (Chen and Goodman, 1998). For
language modelling, the specific problem area we
have focused on in this paper, there is a wide
range of ideas from state-of-the-art language mod-
els that could probably be exploited in combina-
tion with HPM estimation, including ideas from
caching models (Kuhn, 1988), sentence mixture
models (Iyer and Ostendorf, 1996), model prun-
ing (Stolcke, 1998; Seymore and Rosenfeld, 1996;
Goodman and Gao, 2000), and the highly space-
efficient use of Bloom filters (Talbot and Osborne,
2007). Some of these ideas might conceivably be
useful outside language modelling as well. Fi-
nally, from a computational point of view, both
training and estimation is painfully slow in our
current implementation, which is the main reason
why experiments with larger data sets have not
been performed. It is quite likely that the speed
of both training and estimation can be increased
drastically, both by making a more efficient im-

plementation, but also, and more importantly, by
improving the way we search for an optimal cover.

Although language modelling is an interesting
testbed for HPM estimation, it is quite likely that
HPMs are even more useful in estimation prob-
lems characterized by low-dimensional categor-
ical variables, large sample spaces, and smaller
data sets than in language modelling — eg, in
tasks where the data come from manually an-
notated sources such as treebanks, or in domain
adaptation tasks where correction estimators can
utilize their corrective nature. Exploring the use-
fulness of HPMs in these problem domains is an-
other important area of future research.

References

Akaike, Hirotugu. 1974. A new look at the statisti-
cal model identification. IEEE Transactions on
Automatic Control 19(6):716–723.

Breiman, Leo, Jerome Friedman, Charles J. Stone,
and Richard A. Olshen. 1984. Classification
and regression trees. Wadsworth.

Brown, Peter F., Peter V. deSouza, Robert L.
Mercer, Vincent J. Della Pietra, and Jenifer C.
Lai. 1992. Class-based n-gram models of
natural language. Computational Linguistics
18(4):467–479.

Buch-Kromann, Matthias. 2006. Discontin-
uous Grammar. A dependency-based model
of human parsing and language learning.
Dr.ling.merc. dissertation, Copenhagen Busi-
ness School.

Chen, Stanley and Joshua Goodman. 1998. An
empirical study of smoothing techniques for
language modeling. Tech. Rep. TR-10-98, Har-
vard University.

Fellbaum, Christiane, ed. 1998. Wordnet: an elec-
tronic lexical database. Bradford Books.

Friedman, Jerome and Nicholas I. Fisher. 1999.
Bump hunting in high dimensional data. Statis-
tics and Computing 9:123–143.

Goodman, Joshua. 2001. A bit of progress in lan-
guage modelling: extended version. Tech. Rep.
MSR-TR-2001-72, Machine Learning and Ap-
plied Statistics Group, Microsoft Research.

Goodman, Joshua. 2002. An incremental decision
list learner. In Proc. EMNLP 2002.

Goodman, Joshua and Jianfeng Gao. 2000. Lan-
guage model size reduction by pruning and

clustering. In Proc. ICSLP 2000, pages 110–
113.

Grünwald, Peter D. 2007. The Minimum Descrip-
tion Length principle. MIT Press.

Halmos, Paul. 1974. Measure theory. Springer.

Hastie, Trevor, Robert Tibshirani, and Jerome
Friedman. 2009. The elements of statistical
learning. Data mining, inference, and predic-
tion. Springer, 2nd edn.

HPM. 2009. XHPM java implementation of HPM,
rev. 326. http://open-source-dependency-
toolkit.googlecode.com/svn/trunk/XHPM-
EXP.

Huang, Xuedong, Fileno Alleva, Mei-Yuh Hwang,
and Ronald Rosenfeld. 1993. An overview of
the SPHINX-II speech recognition system. In
Proc. HLT 1993, pages 81–86. ISBN 1-55860-
324-7.

Iyer, R. and M. Ostendorf. 1996. Modeling long
distance dependence in language: Topic mix-
tures vs. dynamic cache models. In IEEE Trans-
actions on Speech and Audio Processing, pages
236–239.

Kneser, Reinhard and Hermann Ney. 1995. Im-
proved backing-off for m-gram language mod-
eling. In Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing,
vol. 1, pages 181–184.

Koehn, Philipp. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proc. MT
Summit 2005.

Kuhn, Roland. 1988. Speech recognition and the
frequency of recently used words: a modified
markov model for natural language. In Proc.
ACL 1988, pages 348–350. Morristown, NJ,
USA: Association for Computational Linguis-
tics. ISBN 963 8431 56 3.

Li, Hang and Naoki Abe. 1998. Generalizing case
frames using a thesaurus and the MDL princi-
ple. Computational Linguistics 24(2):217–244.

Ney, Hermann, Ute Essen, and Reinhard Kneser.
1994. On structuring probabilistic dependences
in stochastic language modeling. Computer,
Speech, and Language 8:1–38.

Ripley, Brian D. 1996. Pattern recognition and
neural networks. Cambridge University Press.

Rosenfeld, Ronald. 2000. Two decades of statis-
tical language modeling: Where do we go from
here. In Proc. IEEE, vol. 88, pages 1270–1278.

Schwarz, Gideon E. 1978. Estimating the dimen-
sion of a model. Annals of Statistics 6(2):461–
464.

Seymore, Kristie and Ronald Rosenfeld. 1996.
Scalable backoff language models. In Proc. IC-
SLP 1996, vol. 1, pages 232 – 235.

Stolcke, Andreas. 1998. Entropy-based pruning
of backoff language models. In Proc. DARPA
Broadcast News Transcription and Understand-
ing Workshop, pages 270–274.

Stolcke, Andreas. 2002. SRILM – an extensible
language modeling toolkit. In Proceedings of
ICSLP, vol. 2, pages 901–904. Denver, USA.

Talbot, David and Miles Osborne. 2007.
Smoothed Bloom filter language models:
Tera-scale LMs on the cheap. In Proc. EMNLP
2007.

Yarowsky, David. 2000. Hierarchical decision lists
for word sense disambiguation. Computers and
the Humanities 34(2):179–186.

Step 0: (T)
unpartitioned

T

Step 1: (c1,T)
partitioning T with c1

c1

Step 2: (c11,c1,T)
partitioning c1 with c11

c11

Step 3: (c11,c12,c1,T)
partitioning c1 with c12

c12

Step 4: (c11,c12, ⊥ c1 ,T)
ghosting c1

Step 5: (c11,c12, ⊥ c1 ,c2,T)
partitioning T with c2

c2

Figure 2: Constructing an improved density estimator by subdividing the sample space into smaller
regions by means of partitioning, merging, and ghosting operations (see detailed explanation in section
5).

