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Abstract 

This paper deals with methodological issues of measuring and assessing the 
composition and level of heterogeneity of firms’ intellectual assets. It develops an 
original metric - referred to as the H-index - for measuring heterogeneity at firm level 
using data extracted from patent documents. The main purpose is to improve the 
characterization of research activities within firms in the biotechnology sector. 
Although the H-index grew out of research on biotech firms, the metric carries broader 
relevance for all patent-intensive industries. The measurement and assessment of the H-
index is illustrated and tested using empirical data from our study on Scandinavian 
biotech firms. 
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Introduction 
This paper addresses methodological issues of measuring and assessing the composition 
and level of heterogeneity of firms’ intellectual assets. It presents an original metric for 
measuring heterogeneity, using data extracted from patent documents. We developed 
this metric - referred to as the H-index - with the purpose of improving the 
characterization of firms in the biotechnology sector. The core of this sector, Dedicated 
Biotech Firms (DBFs), has the production of drug discovery research as its sole 
economic activity, undertaken primarily on the basis of intellectual assets. This type of 
output is inadequately characterized by standard classifications of industries or 
products, rendering public statistics of limited use. However, outputs from 
biopharmaceutical research are intensely protected by IPR, making patent documents an 
attractive alternative data-source. Although the H-index grew out of research on biotech 
firms, the metric carries broader relevance for all patent-intensive industries.  

Terminologically speaking, the concept of “heterogeneity” in this context is preferred 
above its semantic cousin, “diversification”. The latter emphasizes the extension of 
assets or activities from a given point of departure, and is often associated with an 
analytical focus on the strategy and direction of the change by which this extension 
comes about. In comparison, heterogeneity is a more straightforward phenomenon, 
essentially concerned with the degree of dissimilarity between constituent elements of a 
composite configuration, assuming no particular locus or level of original homogeneity. 

The paper starts with a brief overview of the theoretical issues that have spurred an 
interest in measuring knowledge heterogeneity. Second, a brief review of the literature 
on diversification and heterogeneity reveals similarities and differences between various 
methods of measuring inter-firm and intra-firm heterogeneity, and we argue there is a 
need for an additional method. Third, we present and discuss the H-index in more detail. 
In this section, we describe the process of measuring intra-firm heterogeneity by 
transforming standard patents codes (IPC) into a corresponding classification system, 
referred to as H-codes. Finally, we discuss the assessment of the H-index and 
corresponding composition and level of heterogeneity and test the validity of the metric 
using empirical data from our study on Scandinavian biotech firms. 

The theoretical context 
A variety of theoretical issues in the literature on industrial dynamics have stimulated 
development of different methodologies to measure heterogeneity and diversification.  

Diversification, and its effects on firm performance, has formed the basis for a key 
research question in the strategic management literature. Since performance differences, 
as an outcome of related and unrelated diversification, has been a major issue of 
concern in this research, a number of methodologies have been developed to measure 
the degree of heterogeneity between different parts of diversified firms (Ramanujam 
and Varadarajan 1989; Chatterjee and Wernerfelt 1991; Markides and Williamson 1994; 
Breschi et al. 2003). 
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Increasing diversification of the knowledge and technology base of companies 
accentuates the strategic issue of managing diversity. Theoretically, three key forces are 
argued to drive technological diversification within firms; (a) opportunities to improve 
products and production systems through the implementation of new technologies; (b) 
continuing competitive advantage of existing technologies, and finally (c) changes in 
products, production systems, and supply chains caused by innovation. Technological 
diversification is, in turn, argued to be a driving force behind firm growth, increasing 
R&D investment, and the emergence of new business opportunities based on related 
technologies (Granstrand et al. 1997). 

Firms tend to operate on the basis of an increasing number of technologies (Granstrand 
1998) and Granstrand et al. (1997) found that firms tend to diversify into a higher 
number of technological fields than product classes. Diversification occurs, however, 
primarily within related technological fields (Patel and Pavitt 1997).  

From another perspective, complementarities may cause firms to diversify into different 
technological fields when, for instance, they wish to diversify their range of related 
products (Pavitt 1998). This is especially seen in large firms, although their 
technological profiles seem to be rather stable over time (Patel and Pavitt 1997). 

The concept of path dependency is central to the evolutionary theory of firms and 
industries (Nelson and Winter 1982; Metcalfe and Gibbons 1989). Understanding path 
dependency in the formation of competencies translates into issues of identifying 
continuity and cumulativeness in learning and innovation in companies. Relatedness 
and similarity – the inverse of heterogeneity – become central issues in this strain of 
literature, as exemplified by (Miyazaki 1995; Miyazaki 1999). Bibliometric and patent-
based data are used to measure the level of cumulativeness. 

Data and metrics 
Before presenting indicators of heterogeneity based on patent data, we briefly discuss 
other public data sources on industries, products, and labour markets, leaving aside, 
however, methods and indicators that require questionnaires or case studies.   

Industry classification codes (ICCs) 

Studies involving measurement of the heterogeneity of diversified firms have used 
Industry Classifications Codes (ICCs), such as NACE and SIC, as their primary source 
of data. However, for several reasons the use of ICCs is not entirely unproblematic for 
this purpose.  

First, the level of heterogeneity of firms materialises in ICCs codes only when the 
company is organised into different business units, and the propensity to do so is not a 
simple reflection of its heterogeneity. E.g. companies of sufficient size and 
heterogeneity in which the decomposability (Simon 1996) of assets is aligned with the 
composition of their outputs will typically pursue an M-form organisation (Chandler 
1962) with separate business units, with ICC codes meaningfully indicating their 
underlying heterogeneity. Companies characterised by non-decomposable bundles of 
technologies and outputs (Prencipe et al. 2003) tend to maintain their U-form, with none 
of their heterogeneity expressed into different ICC codes. 
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Second, ICCs are used to categorise firm activities based on their outputs. However, 
based on the similarity of outputs, firms may be categorised into the same industry, 
although the heterogeneity of their internal asset compositions may vary considerably. 
Firms differ in the level of outsourcing, or may produce similar products using different 
process technologies. 

Third, this latter source of distortion is exacerbated in industries undergoing rapid 
technological transformations, to which firms are known to adapt with different styles 
and timing. And finally, in emerging technologies, statistical classifications exhibit 
serious time lags in their responsiveness to the challenge of categorising new types of 
firms. To exemplify, based on careful scrutiny of the Danish population of biotech 
firms, the present authors have identified in Denmark a total of 45 genuinely research 
based firms. The relevant NACE category is “Research and development, natural 
science and techniques” (code no. 731000). Table 1 shows that more that 25% of 
Danish DBFs are categorised into other codes than 731000.  

Table 1 Distribution of NACE codes on Danish DBF’s 

NACE Frequency %Description 

244100 2 4,4Production of pharmaceutical products 

244200 2 4,4Pharmaceutical production plants 

295690 1 2,2Manufacturing of production equipment 

652395 1 2,2Financing services 

730000 3 6,7Research and development 

731000 32 71,1Research and development, natural sciences 

732000 3 6,7Research and development, social sciences 

743000 1 2,2Technical testing and analysis 

 45 100  

Product classification 

One alternative to ICC is classification at the product level, of the type applied in SITC 
(Standard International Trade Classification). Again, the question is to what extent the 
output (products and services) is a representative or useful indicator of internal asset 
structures. A given set of intellectual assets may be used for producing several kinds of 
related products and services. Also, firms sometimes need to manage more technologies 
than what can be directly derived from observation of the kind of output generated. 
Hence, the relationship between the intellectual asset structure and the output is not 
unambiguous.  

Input-output flows between industries 

Diversification at the firm level has been measured with the use of data on input-output 
flows between industries. Scherer (1982) measured relatedness at industry level based 
on R&D expenses in one industry and the use of the generated output in other 
industries. The ‘concentric index’ developed by Caves et al. (1980) has been used in 
several subsequent studies, for example by Montgomery and Wernerfelt (1988), and 
bears some resemblance to the metric introduced in this paper. The concentric index 
measures diversification by taking into account the percentage of a firm’s sales in 
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different industries and a weighted value for the degree of similarity between SIC codes 
among the industries in which the firm is engaged. The index is calculated as 

Di = ∑ ∑
= =

n

j

n

l
jlilij rmm

1 1

 

where Di  is the diversification of firm i, determined by the percentage of firm i’s sales 
in industry j (mij), the relatedness of other industries l in which firm i is engaged (rjl) and 
the percentage of firm i’s sales in other industries (mil). The weighted relatedness (rjl) is 
assigned value 0 if industry j and l have the same three-digit code, value 1 if industry j 
and l have the same two-digit code but different three-digit codes, value 2 if they have 
different two-digit codes, and value 3 if they have different one-digit codes. 

Input-output flows between industries rely on industry classification codes, making 
them vulnerable to the limitations discussed above. 

Educational composition of workforce 

In some countries, labour market statistics offer information on the educational 
attributes of the workforce. Particularly in the Scandinavian countries, the national 
statistical agencies have developed linkages from this information to statistics using 
firms as their level of analysis. As a result, firms may be characterised by the 
educational composition of their employees, and these characteristics may be translated 
into measures of the heterogeneity of the intellectual assets of firms. Using this 
methodology, Vejrup-Hansen examined the intellectual assets of engineering 
consultancy firms in Denmark (Valentin and Vejrup-Hansen 2004), while Oskarsson 
(1993) studied large Swedish firms in electronic engineering.  

Patent classification 

A number of studies have used patent classification data to indicate diversification. The 
International Patent Classification (IPC) system is used by patent examiners for 
categorizing and organizing patents within different technological fields1. Codes 
distinguish between a large number of technological fields, primarily for search 
purposes, and have been increasingly used for measuring diversification among firms 
(e.g. Jaffe 1986; Jaffe 1989; Granstrand et al. 1997; Patel and Pavitt 1997; Patel and 
Pavitt 2000). Firms’ technological competencies and diversification into different 
technological fields are often measured using firms’ patent shares in different IPC 
codes, often in the form of revealed technological advantage. The latter is defined as the 
relative importance of the firm in each field of technological competence, after 
normalizing for the firm’s share of total patenting. Jaffe (1986) and Jaffe (1989) focused 
on the relatedness of technologies at the firm level. Jaffe measured technological 
relatedness between firms using patent classifications by applying the ‘cosine index’, 
which has been frequently used to measure the level of similarity of research in 
technological fields between firms. The similarity, or “technological proximity”, is 
measured by calculating the overlap of the fractions of firm A’s and firm B’s patents in 
different patent classes. Technological proximity is, applying the cosine index, given by 

                                                 
1 For further information about IPC, please refer to www.wipo.int. 
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where fik and fjk are the fractions of firm i’s and firm j’s patents, respectively, in patent 
class k. Pij is the degree of overlap between fi and fj. Pij is 1 when fi and fi are identical, 
and 0 for firms without any overlap of patents. 

Verspagen (1997) and Breschi et al. (2003) use the co-occurrence of patent 
classification codes to describe relatedness between different technological fields. The 
assumption is that strong relationships between technological fields, measured as the 
frequency of co-occurrence in patent classifications, may shed light on the degree of 
“knowledge relatedness” and knowledge spillover between technologies. Breschi et al. 
(2003) apply the cosine index to measure knowledge relatedness and its effect on firms’ 
technological diversification. The studies are based on co-occurrences of IPC codes in 
patents. 

Firms’ propensity to patent varies across industries, so clearly there are sectors for 
which this type of data provides insufficient coverage. Limitations to the validity of 
patents have also been argued to stem from its inability to pick up the tacit dimensions 
of the knowledge of firms. Patel and Pavitt (1997) argue, however, that tacit and 
codified knowledge are complementary, and hence reduces the limitations of patent data 
as a source for measuring heterogeneity. 

Additional uses of patent data  

Patent documents offer additional possibilities for characterising the composition of 
inventor firms. Citations to non-patent literature, i.e. primarily academic papers, are 
listed so as to document sources and antecedents of the inventions, and they may be 
translated into information on the composition of firms (Narin 2000). Citations of 
previous patents may be applied in a similar manner (Granberg 1988). 

Patents also have text sections such as titles and abstracts allowing inventions to be 
characterised systematically. Such characterisation may be extended to the entire patent 
portfolio of firms, which in turn offers indications of the composition of their 
knowledge and R&D assets. Characterisation may be based on co-word analysis (e.g. 
van Raan and Engelsman 1993; Engelsman and van Raan 1994) and its further 
extension into text-mining methodologies (Valentin and Jensen 2003). 

The H-index  
The H-index is calculated for single firms, based on the main IPC codes of their patents. 
To build a metric particularly suited for the technological fields related to the biotech 
industry IPC codes are translated into an adjusted classification system, referred to as 
H-codes. Within specific technology fields, IPC codes offer rather fine-grained 
categories, that many categories are used too infrequently to accommodate statistical 
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purposes. In these cases categories have been combined, based on their technological 
proximity.  

In the translation into 3-level H-Codes, the first level indicates the highest aggregation 
of technological fields and level 3 the most detailed specification of technological 
fields. Based on an analysis of IPC codes assigned to the patents held by Danish and 
Swedish biotech firms, these codes could be re-classified into nine different, 
homogenous categories at H-code level 1, and further categorized at level 2 and 3 in 
more detailed sub-categories. IPC code level 1 and 2 have been collapsed into H-code 
level 1, IPC code level 3 corresponds to H-code level 2, and IPC code level 4 to H-code 
level 3 (see further figure 1). Use of further levels of the IPC codes would generate too 
many categories at H-code level 4 and produce an excess level of detail for our study 
with a skewed number of patents in each subcategory2. 

Figure 1 Translation of IPC codes into H-codes 
The five IPC levels of IPC code “C12Q-001/18” denote the following:  
IPC-Level 1:  C: Chemistry and metallurgy  
IPC-Level 2: C12: Biochemistry; beer, spirits, wine or vinegar; microbiology or enzymology, mutation 

or genetic engineering. 
IPC-Level 3: C12Q: Measuring or testing processes involving enzymes or micro-organisms, 

compositions or test papers therefore, processes of preparing such compositions, condition-
responsive control in microbiological or enzymological processes, 

IPC-Level 4:  C12Q-001: Measuring or testing processes involving enzymes or micro-organisms and 
compositions therefore and/or processes of preparing such compositions.   

IPC-Level 5: C12Q-001/18: Measuring or testing processes involving viable micro-organisms testing for 
anti-microbial activity of a material. 

This IPC code is translated into the H-code “7.2.0” in the following way: Category “7” corresponds to C12 in the 
IPC system. Category “2” corresponds to Q on IPC level 3. Category “0” corresponds to 001 on IPC level 4.  

Calculating the H-index 

The approach of the H-index is similar to Caves’ concentric index (Caves et al., 1980) 
in that it measures weighted dissimilarities between the codes representing different 
technological fields. H-index is given by 
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The level of heterogeneity within each firm (H-index) is measured as the sum of the 
weighted relationship values (

yxix PPr
+

) of patent H-code relationships [ ]yxx PP + between all 

patents (N) held by a firm, normalized by the total number of relationships
( )

2
1−NN

 

between all patents. For each relationship between patents, it is recorded whether H-
codes are identical or different. Non-identical relationships are assigned specific r for 
each of the three levels in the H-code. Differences at level 1 are assigned a weight (r) of 

                                                 
2 For further information about the translation of IPC codes into H-codes, please contact corresponding 
author. 
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1. Differences at level 2 are given a r of 0,5, and differences at level 3 are assigned a r 
of 0,25. Relationships between patents with identical H-codes score 0. Patent 
relationships are assigned a r on one level only. That is, if H-codes differ at level 1, no 
further evaluation is made at lower level and a value of 1 is assigned to the relationship. 
If codes are identical at level 1, we check for non-identities at level 2 assigning them the 
value of 0,5 or proceed to level 3. Firms with none or one patent only are omitted from 
the calculation and not assigned a H-index value.  

To illustrate the calculation of the H-index and to see the effects of the number of 
patents and the distribution of patents in different technological fields, two cases of H-
index calculation are shown in table 2. Patents of Firm A are found in three different 
technological fields at H-code level 1, indicated by three different codes (3, 5, and 8). 
Patents in category 3 at H-code level 1 are all found in category 2 at H-code level 2, and 
in category 3 at H-code level 3. Patents in category 5 at H-code level 1 are found in 
three different categories at H-code level 2, and so forth. To calculate the H-index, the 
H-code of patent 1 is compared with H-codes of patent number 2 to 10, the H-code of 
patent 2 is compared to the H-codes of patent 3 to 10, and so on. For instance, the H-
code of patent 1 compared to patent 2 and 3 respectively, scores a r of 0 since they are 
identical. The H-code of patent 1 compared with patent 4 scores a r of 1 since they 
differ at level 1. The H-code of patent 5 compared to that of patent 6 is assigned a r of 
0,5 since H-codes differ at level 2. The total r is divided by the total number of 
relationships between patents, resulting in a H-index of 0,77. Firm B, on the other hand, 
hold patents in a single technological field. That is, the H-code is similar at all three 
levels. Consequently, all patent relationships are assigned r 0 because H-codes are 
identical and the H-index of Firm B is 0. 

Table 2 H-indexes for a sample of two DBFs 

FIRM A H-index: 0,77 Patents: 10  
Patent no Main IPC H-code H-code H-code 

1 A61K-031/045 3 2 3 
2 A61K-031/167 3 2 3 
3 A61K-031/167 3 2 3 
4 C07C-275/00 5 1 5 
5 C07D-207/00 5 2 0 
6 C07K-014/705 5 5 3 
7 G01N-033/48 8 0 2 
8 G01N-033/50 8 0 2 
9 G01N-033/50 8 0 2 
10 G01N-033/68 8 0 2 
          
FIRM B H-index: 0,00 Patents: 4  
Patent no Main IPC H-code H-code H-code 

1 A61K-031/12 3 2 3 
2 A61K-031/135 3 2 3 
3 A61K-031/136 3 2 3 
4 A61K-031/5375 3 2 3 
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Figure 2 exhibits the distribution of H-index on Danish and Swedish DBFs holding 
more than two patents each. 

Figure 2 Distribution of H-index on Danish and Swedish DBFs (N=63) 
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Comparison of Metrics 
The H-index builds on elements also found in Caves’ Concentric index. In the 
following, differences between the two metrics will be examined including comparison 
with the Herfindahl index. The latter is a widely used metric for measuring 
heterogeneity and builds on elements similar to the Concentric index. 

The Herfindahl index, given by 
 

Di = 1- ∑
=

n

j

m
1

2  

 
and the Concentric index, given by 
 

Di = ∑ ∑
= =

n

j

n

l
jlilij rmm

1 1

 

 
where m is the share of a firm’s total sales in industries which it is engaged in.  

Comparing these two metrics with each other and with the H-index brings out 
differences in the ways they (1) relate technological categories to each other, (2) assign 
weights to different levels, and (3) normalize the index. These dissimilarities produce 
different sensitivity in the three metrics, particularly for firms with few patents, which 
typically is the case for the population of biotech firms for which the index was 
originally developed. The following section examines some of the differences. 

Relatedness and weights 

In its original form, the Herfindahl index assigns no weights for dissimilarities between 
industry or patent classifications. The Concentric index, on the other hand, takes into 
account bilateral dissimilarities between all technological fields, applying an ordinary 
scale of weights (r) ranging from 0 to 2, depending on the level at which dissimilarities 
occurs. 



 11

The H-index applies a relative scale of weights (r), emphasizing the relative importance 
of dissimilarities at different levels of H-code. Same 3-digit H-codes is assigned the 
value 0, different 3-digit H-codes but same 2-digit H-codes is assigned the value 0,25, 
different 2-digit H-codes but same 1-digit H-codes is assigned the value 0,5, and 
different 1-digit H-codes scores 1. That is, dissimilarities at higher levels of H-codes 
indicate wider distance between technological fields and weights are doubled for each 
higher level of H-codes. 

Normalization 

All indexes normalize index values, but do so by different approaches. The Herfindahl 
and Concentric indexes normalize for the relative size of technological categories. 
Measuring all dyadic patent relationships, the H-index normalizes by the total number 
of bilateral patent relationships, thus capturing both differences in the number of 
technological categories and the number of patents.  

To illustrate the difference, we disregard different weighting and assign dissimilarities 
between technological categories a score of 1. Figure 3 shows the effect on index values 
when a firm increases the number of patents in a given number of technological 
categories in which it holds patents. When the number of patents increases 
proportionally, so as to retain the relative share of the total number of patents of each 
technological category, the Herfindahl and Concentric indexes remain unchanged since 
the relative sizes of technological categories are constant3. This is illustrated by the grey 
curve. The H-index, on the other hand, shifts downwards illustrated by the black curve 
and the dotted black curve (H-index’), where the changing index value of a given 
number of technological categories can be followed along a vertical line. Hence, 
increasing patenting activity within a given number of technological categories, where 
the relative size of categories is kept constant, leads to lower H-index. The H-index, in 
other words, brings out more clearly the size of the actual heterogeneity in the light of 
total potential heterogeneity with increasing number of patents. 

Figure 3 Index comparison 
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3 Neutralizing the weights used by the Concentric index by assigning r the value of 1 for all differences 
between technological categories, results in similar index values for the Herfindahl and the Concentric 
indexes. 
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Small numbers 

The H-index captures differences in both the number of technological categories and the 
number of patents offers by measuring and normalizing by the total number of bilateral 
patent relationships. Hence, it provides better scrutiny, compared to the other indexes, 
of small patent portfolios, which we typically find in small biotech firms. 

Figure 4 exhibits effects of increasing the number of dissimilar patents in a given 
number of technological categories, as also shown by the shifting curve in figure 3. 
When the relative size of technological categories retain the same, the H-index value 
changes as the number of patents within given categories increases because it is 
normalized by the total number of bilateral relationships. The other indexes remain 
constant. The sensitivity of the H-index is higher for small patent portfolios and 
diminishes as the size of patent portfolios increases. 

Figure 4 Index comparison 
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In one extreme case, the H-index remains constant if a firm holds one patent in each 
technological category, shown in figure 5. An increasing number of technological 
categories with one patent in each category will show no effect on the H-index value. 
The index value is constantly 1, indicating fully diversified patent portfolios. The other 
indexes exhibit an increasing heterogeneity as the number of technological categories 
increases. 

Figure 5 Index comparison 
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Figure 6 exhibits index values for patent portfolios with a skewed number of patents in 
the categories, where all categories holds one patents except for one category holding an 
increasing number of patents. As seen, the indexes exhibit different levels and slopes for 
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small patent portfolios but moves towards similar values for large patent portfolios. For 
patent portfolios with distribution of patents in technological categories, different from 
the examples discussed above, the indexes show similar pattern. Hence, different 
sensitivity for small patent portfolios and moving towards similar index values the 
larger the patent portfolio. 
 

Figure 6 Index comparison 
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Application of the H-index  
This section exemplifies an application of the H-index on the biotech industry. It is 
useful to distinguish between the three discovery approaches typically found among 
dedicated biotech firms: (1) bio-pharmaceuticals (mainly proteins operating as drugs), 
(2) antibodies (belong to bio-pharmaceuticals but is analyzed separately because of 
substantial differences in targets and pathways), and (3) small molecules (drugs based 
on molecules of lower complexity than the former two). 

These three approaches differ in the nature of their core problems, and hence also in the 
composition of the knowledge developed for their solution (Valentin et al., 2005). A 
key issue in bio-pharmaceuticals (including antibodies) is to understand the complexity 
of lead molecules to an extent that permits them to be re-engineered so as to address 
highly specific targets and pathways for controlled therapeutic effects. In these research 
approaches, key intellectual assets must combine understandings of both complex 
pathways and intricate lead molecules. Their highly composite architectures expectedly 
should be reflected in high H-index values.   

Small molecule drug discovery operates with leads of much lower complexity, but face 
the challenge of achieving complicated therapeutic effects by means of chemical design. 
For that reason, small molecule firms often focus on a specific binding site and the parts 
of therapeutic pathways that are immediately connected to that site, which in turn may 
relate to multiple disease groups. E.g. some receptor families are present in the 
membranes of many different cell-types in the human body. Correctly understood and 
approached, these receptors may open up to pathways relevant for multiple potential 
decease targets, and in small molecule approaches these potentials are more readily 
explored through the very high variability in synthetic compounds that may be 
generated and screened. For these reasons, small molecule firms build knowledge that is 
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more focused on specific binding sites and their potential pathways. These efforts will 
typically be expressed in broader variability in the leads they explore and patent. Their 
knowledge heterogeneity therefore may be expected to be smaller and more directly 
associated with variability in target exploration.  

Differences between the three discovery approaches are presented in figure 7 which 
gives mean and inter-quartiles of the H-index in each research strategy, confirming that 
bio-pharmaceuticals and antibodies show higher mean H-index and their distributions 
are concentrated at higher levels of H-index. 

Figure 7 Distribution of H-index on research approaches indicated by the 
1st and 3rd quartile in combination with the mean value (vertical line) 
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To understand these differences we need a few general concepts on the types of 
knowledge assets that DBFs bring to bear on their discovery processes. The range of 
competencies in DBFs involved in drug discovery may be classified in three main types 
of intellectual assets (Valentin et al. 2005):  

• Conceptual frameworks include theories, models and heuristics specifying or 
suggesting causal relationships and the conditions under which they are 
operative. 

• Methods include tools, procedures and research instrumentation for generating, 
processing and interpreting data. High-throughput screening is probably the 
most well-known data processing tool for effective screening of high amounts of 
data 

• Internally generated information such as screening libraries or other results of 
previous transformations of data into higher-order inputs for problem solving. 

The differences between the three discovery approaches also mean that they vary 
substantially in the ways they draw on and combine the three asset types, and in turn 
that should produce different values on the H-Index.  

To examine differences in the way these knowledge assets are combined in discovery 
activities we apply a simplified categorization of patents based on their relationships to 
the three knowledge assets, as identified by their main IPC. Patents referring directly to 
compounds and to protein leads, we argue, relate particularly to the conceptual 
framework assets of DBF, because they are embodied expressions of the way targets 
and pathways are perceived and modelled. These compound patents will be referred to 
as COP. The remaining patents of firms, not relating to specific compounds or leads, 
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will instead represent the other two types of assets, i.e. methods and information, and 
they are referred to as tools/method patents (TMP).  

Bio-pharmaceuticals, combining complex knowledge of both pathways for controlled 
therapeutic effects and re-engineered lead molecules addressing specific targets, is 
expected to combine a COP share with a comparatively larger share of TMP patents 
than small molecule drug discovery. The latter discovery approach, on the other hand, is 
expected to show higher shares of COP patents since they focuses on leads of much 
lower complexity and primarily strives to achieve complicated therapeutic effects by 
means of chemical design. The share of COP and TMP patents in firms pursuing each 
of the three discovery approaches is presented in figure 8. 

Figure 8 Share TMP and COP patents in research approaches 
(number of firms indicated inside and number of patents beneath columns) 
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Antibodies and other bio-pharmaceuticals are seen in figure 8 to tend towards more 
equal shares of COP and TMP patents, whereas small molecule firms are more one-
sided, having predominantly one type of patent. The latter research approach, 
accordingly, have less composite knowledge structures than do the two former. 

To assess the impact of COP and TMP patents on the H-index, we decompose the 
overall r for each firm into three separate components; a r associated with H-code 
differences within COP patents (rCOP), a r associated with H-code differences within 
TMP patents (rTMP), and a r associated with H-code differences between COP and 
TMP patents (rMIX). The sum of these three components corresponds to the total r as 
obtained in the H-index calculation. Each sum is divided by the aggregate sum, 
revealing their share of the total r. For each firm the share of total r for rCOP is 
calculated, along with corresponding shares for rTMP and rMIX. The average shares 
for firms in each research approach are presented in figure 9. 
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Figure 9 Share of total r 
for patent categories in each research approach. 
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The total r for biopharmaceutical firms has a very high share of rMIX (60%), while the 
second highest share (44%) is observed for antibody firms. Small molecule firms in 
particular reveal high impact of rCOP (64%). Figure 9 confirms that each of the 
components of rCOP, rTMP AND rMIX has a share of overall r corresponding to what 
we should expect from the composition of COP and TMP patents presented in figure 8. 
The expectations are based on the various compositions of knowledge and their relation 
to core problems in different discovery approaches as discussed in the beginning of this 
section. In other words, the H-index proves capable of picking up these core differences 
in knowledge heterogeneity between large and small molecule drug discovery. 

Final Remarks  
The H-index seems useful, compared to the Herfindahl and Concentric indexes, to 
measure and assess the level of heterogeneity based on how it relates technological 
fields, assigns weights to different levels, and how it normalizes index values. The 
resulting sensitivity is particularly suitable for small numbers of patents, which is shown 
by the above application of the H-index to biotech discovery approaches. The H-index 
may, however, be used for analysis of firms in all patent-intensive sectors. In a parallel 
paper the authors further demonstrate its usefulness for unpacking and analysing 
architectures of knowledge assets and their related scope advantages in biotech firms 
(Valentin et al. 2005). 
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