

Constitutional Dynamics of the Open
Source Software Development

Jukka Kaisla

Department of Industrial Economics and Strategy
Copenhagen Business School

Howitzvej 60, 2000 Frederiksberg, Denmark
jukka.kaisla@get2net.dk

May 2001

mailto:jukka.kaisla@get2net.dk

 1

Introduction

This paper maintains that the nature of conventions and social

contracts among the software developing community have been decisive
in the open source software development. It will be explained that
purposeful design has played a minor role in the overall success of open
source projects, such as Linux operating system.

In addition to conventions and social contracts, the paper will
examine the importance of three other factors: (1) objective knowledge
aspect of the shared source code, (2) modularity of software, and (3)
selection of software by the project management. The conclusion will be
that the extent to which these elements are of designed origin, their
design is not ultimately critical to open source software development.

The open source software model is based on the freedom to use,
copy, modify and redistribute software. The term open source means that
the source code needed to modify software is provided, and that the
users/developers have the right not only to use, but also to modify and
distribute modified versions. The starting point is that nobody is
permitted to pronounce an exclusive property right to open source
software. The proprietary model with which the open source model is
convenient to be compared is based on a more conventional idea of
copyright. The developer/distributor reserves all rights to copy, modify
and distribute while users have only the right to use the software.

The sketch of the complex and interdependent model is as
follows. The elements of the model are examined in terms of their
degree of intentional design vs. unintended impact, as well as in relation
to their degree of importance or necessity to the process. The analysis
will begin by looking at general conventions of fairness among the
software-developing community. These conventions are unintended
from the open source software development point of view. The
conventions of fairness give rise to specific conventions of ‘property’ in
open source development. Drawing upon these conventions, the central
players in open source development designed a social contract to
maintain the beneficial pattern of cooperation among developers.

Open source software itself brings important elements to the
model as well. Three elements are considered here: technological
modularity which is viewed here as comprising both intentional and
unintended elements, the objective knowledge aspect of source code as
an enhancement to communication (an unintended element), and the
selection process of software improvements which is an intended
element in the model. All these elements together give rise to interests and
capabilities of the members to participate in the development of open
source software. Genuine uncertainty of the overall interplay between
these elements was implied by Linus Torvalds, the founder of Linux, the
prominent open source operating system: ‘Only afterwards have we
started thinking about what went right in the process’ (Wow, 1 June
2000), and ‘Linux emerged by coincidence’ (Wow, 28 Nov 2001).

The paper is organised as follows. I begin by discussing the
background of open source software development. The second
following section will examine open source conventions and social
contracts, together with some central reasons for their emergence and

 2

enforcement. In the third section, I examine the modularity, objective
knowledge and selection related aspects of open source development.
The fourth section will examine the interplay among the spontaneous
and the purposefully designed elements of the model. A central issue for
the future of the open source paradigm appears to be the question about
how the social contract will develop.

Open source software – aims and rationales

Open source software development is looked upon today with

increasing astonishment. From the rational maximisation perspective, it
should not exist or at least not spread as fast as it does. Acquiring,
developing and distributing open software is free of charge. The
developers do not receive the right to own their contribution and are
required to provide access for anybody to obtain their contribution.
Access to and distribution of software is facilitated by modern
technology, especially by the Internet and e-mail news groups.

The beginning of the open source movement, in the early 1980s,
was a conscious attempt to continue the software-sharing conventions of
the software developers’ community. Sharing and exchanging software
freely among the developers was the convention before; in the early
1980s prominent university laboratories and companies started using
nondisclosure agreements to prevent the distribution of free copies
(Stallman 1999). The software-sharing convention at that time was
rational from the developer’s point of view, as income streams were not
connected to choices whether or not to distribute copies and
modifications. The game was reciprocal where everyone gained by
helping and receiving help from others. But the game can go on only as
long as copyrights and licenses do not prevent it — and they started to
do precisely that.

There were many reasonable reasons for the increasing use of
copyright and restrictive licenses in the 1980s. Without going too deep
into that line of discussion, one can hypothesise that the change from
huge central computers toward personal computers was an important
factor in the development. The rise of proprietary software made some
members of the software developers’ community uncomfortable. The
question was not so much about whether it was morally correct for
somebody to make money out of developing and selling useful software.
It was perhaps more about how they perceived software in general. They
viewed software as a general means to help people – very much like
language. Nobody would like to see our common language being closed
up by someone who would then have the sole right to modify and
distribute it.

The open source movement arose as a countermovement to the
proprietary model. In order to be able to resist the increasing
dissemination of proprietary software, open source developers needed to
create their own operating system, and the ‘GNU’ project was born
(Stallman 1999). The GNU project was built upon a set of principles that
can be viewed as the social contract of open source movement. The terms
of this social contract, called Copyleft, were later on considered too
extreme by developers who saw that in order to attract the attention of

 3

business people, they need to alleviate/omit some terms to facilitate the
combination of the open source and the proprietary models. This
process appears to be increasingly in the core of open source software
development today.

A distinctive organisational aspect of open source software
development is that there are no predefined boundaries to an open
source software organisation. Membership in a project is based on self-
selection where those developers who feel capable of contribution do.
An open source software project uses software development capabilities
throughout the world. Suggested improvements and modifications are
then reviewed by a central agency, the project management, which has
the right to select between beneficial and less beneficial suggestions. The
Internet functions as a prominent means of coordination and
communication among developers.

A central distinction between open source and proprietary
approaches in software development is that the proprietary approach
allows the developers to collect rent from the secret bits of their
software, while on the other hand, it forecloses the possibility of truly
independent peer review. The open source approach sets up conditions
for independent peer review, but precludes the extraction of rent from
the secret bits (Raymond 1999).

A central issue that open source software developers need to
tackle is the special structure of rights and responsibilities. The rejection
of the conventional property rights structure complicates the
accountability of each developer. As the social contract does not
encourage demarcation of various rights among developers, conventions
emerge to remedy the situation. Open source development benefited
from building upon conventions that had been developed in software-
developers’ communities earlier. The open source conventions need not
be discovered in the genuine sense because for those who shared the
earlier cooperative behavioural pattern, they are rather obvious remedies
to the problems that would predictably arise in their absence. Thus, the
existence of multilateral reciprocity among software developers influence
their procedural interests to continue cooperating even if the property
rights in the software world were changing toward the proprietary
model.

Open source social contracts and conventions

Open source software development is based on a peculiar pattern

of rights and responsibilities. This section will analyse the terms of the
open source social contract, which was intentionally designed to preserve
open development, and the conventions that arose to frame this
development. The social contract prevents anyone from pronouncing
exclusive property rights to open source software, whereas central open
source conventions function precisely to define particular property
rights. There is an interesting interplay between the deliberate aim of the
social contract and conventions that define boundaries between
acceptable and unacceptable behaviour.

To complicate things, there is an additional set of principles, the
Open Source Definition (OSD, see references), which was designed to

 4

provide more closure than the social contract, the Copyleft. A number of
licenses have emerged based upon the OSD. The development of those
licenses shows a tendency away from the original social contract towards
a hybrid version of open source and proprietary principles.

Copyleft and GPL — the original social contract

The aim of the open source movement was to counterbalance the

increasingly proprietary world of software development. In order to
secure that open source software, after having left the hands of the
original developer, remains open source, a legally binding set of rules
needed to be established. The solution was found in the combination of
copyrighting and licensing. Copyright resolved a problem that, e.g.,
public domain software suffered from. Public domain software is free in
the extreme sense that anyone is free to take a copy of such software,
pronounce it as her own, change the author (or any other) information,
and start selling it under whatever license she wishes.

The open source people were knowledgeable of the risks that
complete freedom might bring about (such as converting open source
development into closed source), so they chose to copyright their
software, and to provide the General Public License (GPL, see
references) based upon the principles of Copyleft to go with it. Copyleft
uses copyright law but functions as the mirror image of the conventional
use of copyright. The central idea of Copyleft is to give everyone
permission to run a programme, to copy, redistribute, modify, and
distribute modified versions — but not the permission to add
restrictions to the license. It is important to notice that the freedom
Copyleft provides does not have anything to do with price. Anyone is
free to charge anything one wishes from (re)distribution — as long as
the same opportunity is open to anyone else as well.

The central aim of Copyleft being the prevention of open source
software from becoming converted into closed source, some important,
although unintended, implications follow. A central license design
problem is that the designer must not only consider various activities a
licensee is prevented from doing, but she must also imagine various ways
a licensee could circumvent any of the license terms. The aim of the
GPL license is not to prevent people from distributing GPLed software
together with closed source software using the same medium (such as a
CD-rom). To be sure, the open source principle would have nothing
against combining open and closed source software into an aggregate
programme, if it were possible to demarcate where one license starts and
another ends. This is, however, technically next to impossible and would
provide ample opportunities for the more restrictive license to
encompass the less restrictive, the end result being that the whole
programme would be interpreted through the more restrictive license.

For this reason, GPL contains a term that permits distribution only
as ‘independent and separate works’ with software based on a license
more restrictive than the GPL. An attempt to combine GPLed software
with another based on a more restrictive license is legitimate only if the
resulting whole becomes GPLed. This is why GPL is considered viral or
contagious. But we need to recognise the motivation behind this viral
nature. The clause is there to protect the less restrictive license from

 5

being interpreted through the more restrictive, in other words, it
prevents GPLed software from being hijacked by closed source
software. I will turn to this point below when the more relaxed Open
Source Definition is discussed.

Open Source Definition (OSD) - the revised social contract

Open Source Definition (OSD, see references) is a bill of rights for

the recipient of open source software. It functions as a certificate that
ensures that licenses accepted by OSD meet the required criteria and can
thus be defined as open source licenses (Perens 1999). OSD grew from a
certain degree of discomfort with the demand of symmetry and
reciprocity in Copyleft and GPL. The developers of OSD wanted to
better be able to connect with the closed source world and still ensure
that open source software remains open source. Here are the OSD terms
and a short analysis on their function:

1. Free redistribution: a license based on OSD may not restrict

any party from selling or giving away the software as a
component of an aggregate software distribution
containing programmes from several different sources.
The license may not require a royalty or other fee for such
a sale. The rationale behind this clause is to promote free
redistribution by eliminating incentives for extracting
rents on others’ work. This clause has the effect of
retaining the game cooperative.

2. The source code must be included. This clause enhances the
development of open source software as modifications
are often impossible without having access to the source
code.

3. Derived works: a license must allow modifications and
derived works to the original software, and must allow
them to be distributed under the same terms as the license
of the original software. For rapid development of
software, people need to be able to experiment with and
redistribute modifications. This clause has an interesting
implication, as it does not require any producer of a
derived work to use the same license terms as the original,
it only provides an option to do so.

4. Integrity of the author’s source code: a license must explicitly
permit distribution of software built from modified
source code and it may require derived works to carry a
different name or version number from the original
software. This clause enhances reputation building among
developers. People need to know who is responsible for
particular modifications. The term also facilitates the
distinction between official and unofficial changes to
software.

5. No discrimination against persons or groups. This clause is based
on the recognition of the Hayekian problem of dispersed
knowledge. Promoting diversity of people and groups
equally eligible to contribute is viewed beneficial because

 6

we do not know beforehand who will discover something
valuable.

6. No discrimination against fields of endeavour: for example, a
license may not restrict software from being used in a
business. This clause encourages commercial use of open
source software.

7. Distribution of license: rights attached to a programme must
apply to all to whom the programme is redistributed
without the need for execution of an additional license by
those parties. This clause prevents any attempt to
indirectly close up software, such as requiring a non-
disclosure agreement.

8. The license must not be specific to a product: rights attached to a
programme must not depend on the programme’s being
part of a particular software distribution. This clause
facilitates extracting open source software from any
distribution, and preserving the extracted software with
the same rights as those that are granted in conjunction
with the original software distribution.

9. The license must not contaminate other software: a license must
not place restrictions on other software that is distributed
along with the licensed software. This clause facilitates the
distribution of open source software along with proprietary
software, but at the same time it restricts combining open
source software with proprietary software under the
license of the latter. So, any combined work needs to be
distributed under OSD.

The third clause on derivative works contradicts the terms of

Copyleft and the GPL insofar as more restrictive terms can be
introduced to the modification. What this clause does is that it opens up
the possibility to privatise modifications and charge money from their
use. The OSD conformant BSD license (see references) provides
precisely this. However, OSD restricts charging money from the initial
license only, so the holder of the initial license is restricted from charging
anything from the subsequent redistributions. This creates a tendency for
the price of BSD licensed software to approach zero, but it also permits
converting a derivative work on BSD software into closed source.

The critical point in preserving open source development open
also in the future appears to be the modifiability of license terms. The
GPL license terms themselves are outside the rights that the license
provides, that is, the GPL defines rights to software which does not
include the license itself. By this it prevents any attempt to modify the
license terms and can thus guarantee that software which is initially
distributed under GPL also remains under it, irrespective of how much it
will be modified during the development. The modifiability of the BSD
license terms does not provide any guarantee of the future development
of open source and is thus vulnerable for rent seeking.

 7

Open source conventions

Open source conventions are based on fairness, non-

discrimination and equal treatment of all parties. While most open
source developers do not object to others profiting from their
contribution, most also demand that no party be in an exclusive position
to extract profits. A developer is willing to let someone else to profit by
selling her software or patches, but only as long as the developer herself
could also potentially do so (consistent with both Copyleft and OSD).

Developers have observed that licenses that include restrictions on
and fees for commercial use have serious chilling effects. Restrictions on
use, sale, modification, or distribution inflict cost of conformance
tracking and, as the number of packages people deal with rises,
uncertainty and potential legal risk increases. This outcome is considered
harmful, and there is therefore social pressure to keep licenses simple
and free of restrictions. Despite this convention, new variants of more
restrictive licenses have been developed (such as the BSD). A potential
source for this development are aspirations to benefit from the available
open source software together with the positive value of the open source
label, and at the same time to gain a monopoly position through
exclusive rights to software.

A central function of open source conventions has to do with
preserving the peer-review culture based on multilateral reciprocity.
License restrictions designed to protect intellectual property or capture
direct sale value often have the effect of making it legally impossible to
fork1 the project. While forking is considered a last resort, it is
considered critically important that that last resort be present as
protection against a maintainer’s incompetence or defection (Raymond
1999).

The open source social contracts (both the Copyleft and the OSD)
permit that anyone can hack anything. Nothing prevents half a dozen
different people from taking any given open source product, duplicating
the sources, running off with them in different evolutionary directions,
all claiming to be ‘The’ product. In practice, however, such forking
almost never happens. Splits in major projects have been rare, and
always accompanied by re-labelling and a large volume of public self-
justification. The open source movement has an elaborate but largely
spontaneous set of ownership conventions. These conventions regulate
who can modify software, the circumstances under which it can be
modified, and who has the right to redistribute modified versions back
to the community (Raymond 1998):

• There is strong social pressure against forking projects.

Forking does not happen except under special conditions,
with much public self-justification, and with a renaming.

• Distributing changes to a project without the cooperation
of the moderators is disapproved.

1 Forking means to take any given open source product, to duplicate the

sources, and to develop them in different evolutionary directions.

 8

• Removing a developer's name from a project history,
credits or maintainer list is not permitted without the
person's explicit consent.

What does ‘ownership’ mean when property is infinitely

reduplicable, highly malleable, and there are no explicit coercive power
relationships in the surrounding culture? The owner(s) of an open source
software project are those who have the exclusive right, recognised by
the community at large, to redistribute modified versions. According to
the standard open source licenses, all parties are equals in the
evolutionary game. But in practice there is a well-recognised distinction
between ‘official’ patches, approved and integrated into the evolving
software by the publicly recognised maintainers, and ‘rogue’ patches by
third parties. Rogue patches are unusual, and generally not trusted
(Raymond 1998).

Conventions encourage people to modify software for personal
use when necessary. Conventions are also rather indifferent to activities
of redistributing modified versions within a closed user or development
group. It is only when modifications are posted to the open source
community in general, to compete with the original, that ownership
becomes an issue.

There are, in general, three ways to acquire ownership of an open
source project. One is to set up a project. When a project has only had
one maintainer since the beginning and the maintainer is still active,
convention does not even permit a question as to who owns the project.
The second way is to have ownership of a project to be transferred by
the previous owner. There is a clear convention that project owners have
a duty to pass projects on to competent successors when they are no
longer willing or able to invest needed time in development or
maintenance work. The third way to acquire ownership of a project is to
observe that it needs work and the owner has disappeared or lost
interest. The responsibility of the acquirer is to make an effort to find the
previous owner. If the previous owner cannot be found, then the
acquirer may announce in a relevant place (such as a Usenet newsgroup
dedicated to the application area) that the project appears to be
orphaned, and that she is considering taking responsibility for it.
Convention demands that the acquirer allow some time to pass after the
announcement. In this interval, if someone else announces that they
have been actually working on the project, their claim exceeds the
newcomers. It is considered good form to give public notice of the
intentions more than once.

These features suggest that the conventions are not accidental,
although they may be spontaneous responses to the social contracts that
do not clearly define property rights among the developers; spontaneous
in the sense that such conventions are increasingly conformed to within
a group facing such a social contract. Later on in this paper the open
source conventions are examined against the background of an ancient
body of natural law.

 9

Objective knowledge, modularity, and selection

In this section, three further components of the model are

introduced: (1) objective knowledge, (2) technological modularity, and
(3) project management in open source software development. The
central aspect in the communication structure considered here is
unintended, it has to do with the nature of software per se. The
technological modularity demonstrates both intentional and unintended
aspects of open source development, and the same goes for project
management.

Communication and objective knowledge

At first glance, concepts like informal networks or communities of

practice seem to illustrate well what is going on in open source software
organisations. A well functioning organisation needs appropriate means
for communication and knowledge sharing among its members.
Whenever informal networks appear, they tend to generate their own
norms and conventions to facilitate communication, thus constituting
communities of practice (Crane 1972, Lave and Wenger 1991). This
happens both within and across organisations.

The development of structure in a community of practice depends
on the overall size of the community and on the diversity of skills
available. Collaborative performance enhancement depends not only on
these two factors but also on the rates at which the members produce
results that are beneficial for the whole community (Huberman and
Hogg 1995, 74). Huberman and Hogg advocate an idea of a natural limit,
or bandwidth, to the number of people an individual member can
interact with in a network. This limit ranges from types of situations
where the members can interact with everybody very rarely to types
where a limited number of members interact very often.

Open source software projects can be analysed, however, through
an alternative model of communication, which is less limited by the
natural bandwidth effect. It differs from the basic network model in that
the members need not interact directly with each other. There is a
component that facilitates the flow of knowledge beyond what the
members could attain when interacting directly with each other. This
component is the objective knowledge inherent in the software itself (cf.
Popper 1972). What makes knowledge within an open source project so
unique is the source code that is always provided together with the binary
version.

Consider two software developers who try to communicate some
functionality problems in a closed source programme, say Microsoft
Word. Neither of them has the access to the source code as they do not
work for Microsoft. When they discuss the problem they need to
continuously interpret and reinterpret what the other party is saying and
meaning because they lack an exact language that would require little or
no interpretation. The source code provides precisely that function in
two distinguishable ways: (1) by being an exact language, and (2) by being
objective knowledge by which developers can coordinate (through trial and
error) their subjective knowledge. Language can be viewed as part of the

 10

body of objective knowledge, but here language is discussed as the
meaning of a means of communication, separate from the knowledge
content of any particular sentence. This distinction can be found in, e.g.,
computer languages that can function simultaneously as a shared
language among software developers (coordinator of meanings) and as
carrying out objectively existing functions (a piece of code has an effect
in software disregarding how it is interpreted).

To see the difference between the network model of
communication and the one suggested here consider the following figure
1:

Figure 1: Communication models

All-channel interaction Communication through object

Here we have two communication models among five members.

In the first model, the members communicate directly with each other
while in the second model an object (such as software) functions as an
objective entity to which each member relates. A core difference
between these models is that in the first alternative the members need to
find out who knows what at each instance, whereas in the second model
the objective entity coordinates the type of knowledge that is needed at
each instance. In the first model, communication among the members is
limited by their abilities (including the costs) of maintaining versatile
connections (the bandwidth) whereas in the second model, only those
members who at a particular instance perceive being able to add value to
the development process do so. Open source software is rather an
extreme case as it functions as an exact language and as objective
knowledge at the same time.

Cusumano (1997, 9) suggests that small teams conducting complex
tasks are more effective than large ones because it is easier to have good
communication and consistency of ideas among team members. Two
issues are of interest here. First, the question of what is meant by good
communication and consistency of ideas. Second, the issue of knowing
in advance who will know something valuable in the future.

Good communication is assumed here to be directed at a target
(such as software which Cusumano’s article deals with). Good
communication may mean that things that are understandable by the
majority or all members are communicated. Frictions in communication
may be due to some members being smarter than the rest, or less smart
(among many other reasons). Consistency of ideas is linked with good
communication. What the members perceive as good communication
can be the result of the consistency of their ideas. It is, however, not

 11

clear to what extent consistency of ideas works well as a primary
criterion when complex systems are being developed. A novel idea may
be in conflict with the established pattern of consistency, and thus
become rejected before it is assessed to its full potential. A small team
may work well in resolving conflicting interests among the group members,
but the smaller the group the less versatile ideas it can produce.

This links us to the Hayekian knowledge problem, i.e., to our
ignorance of who may be in the best position in the future to resolve
particular problems. If the group members are defined from the
beginning, then only those discoveries can be made that are perceived by
the members. If then consistency works as the moderator of ideas, only
those discoveries are recognised that are consistent with the patterns that
are already established. Discoveries become thus limited in two steps:
first, by group size, and second, by the consistency requirement.

Technological modularity

Cusumano (1997) describes how Microsoft makes large teams

work like small teams. The core strategy is to break both the organisation
and the products into subunits to facilitate coordination among the
members and product components. The keyword is modularisation, both
at the organisational and the product levels.

Modularity refers to a general set of principles for managing
complexity. Modularity is attained by breaking up a complex system into
discrete subunits which can communicate with each other only through
standardised interfaces within standardised architecture (Langlois 2000,
1). By doing so a development team can prevent the design process from
becoming excessively complex at many levels at the same time. The
keyword in modularisation is thus standardisation of the critical interfaces
that subunits interact with. The degree of modularity in a system can be
assessed by examining to what extent small changes in one part of a
system lead to unpredictable outcomes in other parts of the system. If a
system is decomposed into modules, then changes in one module do not
affect others. What modularity does is it breaks the interdependency
among the subunits as each module interacts solely with the common
interface.

Modularity within organisations can be divided into different
types: modularity of the organisation itself, modularity of the products,
and finally, modularity of property rights within the organisation.
Langlois (2000) suggests, contrary to Sanchez and Mahoney (1996), that
technological modularity does not necessarily presuppose organisational
modularity. Indeed, there seems to be no compelling reason to assume
that product modularity necessarily leads to organisational modularity.

Cusumano (1997) describes how Microsoft applies both
organisational and technological modularity to coordinate and stabilise
software development. Open source software, like Linux-derived
operating systems, demonstrate a high degree of technological
modularity but a lower degree of organisational modularity. According to
Cusumano (1997) in large development projects in Microsoft, ‘many
team members create many components or features that are
interdependent but difficult to define accurately in the early stages of the
development cycle’ (p. 10). And also that they need to continuously

 12

‘synchronize what people are doing as individuals and as members of
teams working in parallel on different features, and periodically stabilize
the evolving product features in increments as a project proceeds’ (p.
11). The strategy is to continuously iterate among several designs, builds,
and testing while developing a product (ibid.). All this seems to indicate
that, contrary to Cusumano’s view on modularisation in Microsoft, their
product development is in fact non-modular. Modularity would prevent
interdependency problems and activities resulting from these:
continuous synchronisation and iteration as projects evolve.

The object oriented model of communication shown above
illustrates open source software development. Consider the object being
decomposed into modules each interacting with a standardised interface.
In open source software development, the team responsible for
developing a particular feature is not defined in the beginning of the
project. Instead, the team itself evolves according to the capabilities of
individual members to resolve particular problems that arise during the
development. Communication among developers is facilitated through
interfaces and is carried out in specific arenas (e.g., discussion groups on
the Internet) for communicating particular issues. The organisation itself
is non-modular in the sense that there is no team exclusively defined to
various development projects. If a developer identifies the ability to
contribute to a project at a specific instance, she can freely do so. A
central benefit from not limiting the development team is that more
discoveries and innovations arise during the development process.
Another beneficial aspect of keeping the development team open is that
we do not know in advance which developer might resolve a problem
arising from the previous round of improvements. The development of
open source software show a dramatically higher speed of improvements
and debugging than what is achieved within the closed source
development (e.g., stability and speed of development of Linux vs.
Microsoft Windows).

Selection

Open source software organisations are open, non-hierarchical

systems. Project management can be distinguished from other members,
however. The management normally consists of the property rights
owners (defined by convention). The development of the open source
operating system Linux has involved a myriad of extensions and
improvements along the years, and yet its initial developer, Linus
Torvalds, holds the position to unilaterally select among potential
improvements. This suggests two unrelated issues: first, the strength of
the property right conventions in open source development, and second,
a conjecture about the respective importance of variation and selection
in software development.

As time passes, the weight of other developers’ contributions to
any given project normally increases. As in the case of Linux, the initial
developer may limit his tasks to almost solely selecting incoming
suggestions. The principle of prominence may play a central role in
sustaining the property rights convention. As years pass and thousands
upon thousands of developers have contributed to the development, the

 13

only prominent person who stands out is the one who has held the right
to select among trials.

This leads us to an interesting suggestion: prominence does not
necessarily arise from the critical nature of the task, but perhaps from a
simpler fact that the person who selects stands out because of her role as
the initiator. The chain of thought goes something like this: empirical
findings show that open source software demonstrates specific strengths
over closed source alternatives. These have to do with the speed of
improvement and bug fixing, reliability and stability, among other things.
This being a general pattern it is hardly likely that open source project
managers just happen to be superior in selecting good suggestions from
bad ones. Rather, a potential explanation would be that selection is not
the central problem, whereas creating variation is. An experienced
developer can perhaps easily see what suggestions are worth looking
into. And then, technological modularity enhances testing and assessing
new variants. Creating variation is precisely what open source software
development is superior in. The number of suggestions (variation) to any
open source project of some interest exceeds what a coherent closed
source development team could ever come up with.

This links us back to the nature of prominence in the open source
property right convention. Insofar as selection is not the critical issue,
but the creation of variation is, important contributions should have
some role in the property right structure. The result would be that open
source software would be ‘owned’ by many, instead of by few. This
would, however, be dysfunctional from the project management point of
view. Consider suggestions for improvements being voted on in
discussion groups. The dysfunctionality of voting assumes of course that
software developed by voting would not be any better than another
developed by the single selector model. The fact that voting is not
generally used promotes the argument that selecting is not the central
problem.

This section has suggested three central features to the open
source software model: (1) acknowledgement of the dispersed nature of
knowledge and of the problem of stimulating the growth of knowledge,
(2) communication through an objective entity that functions as a
communication interface among the members, and (3) technological
modularity of the software.

Dynamics of the interplay

As explained earlier in this paper, open source social contracts

(Copyleft and OSD) and conventions work in opposite directions. The
social contracts facilitate open development by preventing exclusive
property rights while conventions define property rights among the
members. It is, however, important to notice that social contracts and
conventions have a common origin, namely conventions. A social
contract, while being a product of intentional deliberation, depends on
conventions of fairness and just conduct. The connection becomes
effective as soon as we introduce the possibility of social contract, not
only to constrain behaviour, but also to modify interests. After reaching
an agreement to reciprocally restrict behaviour to prevent conflicting

 14

self-interest from arising, the members may be better able to observe the
benefits of long-term consequences. Their consequential interests toward
reciprocal behaviour may increase as they learn during the game. The
game becomes developmental as experience together with expectations
facilitates steps to a higher level of cooperation.

Conventions and interpretation

The development of conventions is linked with precedents and

prominence (Schelling 1960, Lewis 1969). Interpreting the behavioural
recommendations of conventions in specific situations may create
problems even if the individual is procedurally motivated in finding the
appropriate solution. The hierarchical structure of conventions does not
necessarily help the task of interpretation. The individual may search for
analogous conventions applied in situations somehow resembling the
one at hand, or she may resort to a more general convention that applies
through a number of dissimilar situations. For instance, a general
convention of ‘finders — keepers’ that provides a moral argument for
first possession is clear as a principle, but less so in empirical terms.
Depending on a more precise convention of proper behaviour when
finding money on the pavement, the finder may either consider herself
the first possessor or not.

Consider open source property rights conventions against the
finders — keepers convention. It seems morally plausible to argue that
an individual obtains the property right to an unowned resource by
mixing her mental and physical labour with it (Locke 1986, Hume 1969,
Rothbard 1982, 33). According to this Lockean idea, nobody is in the
position to simply pronounce legal ownership to a vast area of land
without indicating a differential relation to it by, e.g., fencing and
cultivating it. Analogously, one who is the first to pick up driftwood on
an unowned shore has the right to claim the ownership title to the
findings because no other principle offers more prominent justification
(Sugden 1986, 95). The Western tradition of property rights is largely
consistent with this principle.

The initiator of an open source software project is clearly the
prominent candidate to claim ownership title to the project. The
potential acquirer of an orphaned project needs to signal loudly her
intentions, in order to make sure that the finders — keepers principle is
applicable. In the same vein, forking is intuitively morally wrong because
it violates the finders — keepers principle.

Open source development demonstrates something that seems to
violate the finders-keepers principle, however. After a project has been
developing for a period of time, it may turn out that someone outside
the project management has put mental and physical labour into the
project to a degree that might contest the right of the initial owner. The
finders — keepers principle does not necessarily provide a clear-cut
solution because, on the one hand, the initial owner has a strong
entitlement, but on the other hand, new extensions and modifications
can be viewed as new, hitherto unowned elements whose moral
entitlement should go to the developer.

Examining open source conventions on ownership against the
background of finders — keepers provokes a conjecture about an

 15

inherent tendency of open source development to dissolve. The
realisticness of this conjecture depends on the relative strengths of
finders — keepers and open source property right conventions. The
inherent morale in finders — keepers deals with balancing effort with
entitlement. The more effort one puts into an unowned resource, the
more justified a property right claim is. The open source convention of
retaining the property right with the project initiator may contradict our
interpretation of justice when contributions and efforts flow from the
group at large. If this is so, our interpretation of finders-keepers is closer
to what I suggested above, that the creation of a modification or
extension is perceived per se as justified basis for ownership.

Later developments in open source software suggest a tendency
toward disintegration and toward the proprietary model. Instead of
putting efforts to the development of one Linux operating system, the
community has offered dozens of commercial Linux versions. Their
prices have risen to almost the same level as Microsoft Windows, their
major closed-source rival.

Objective knowledge, modularity and project management

The objective knowledge aspect of open source software is clearly

an unintended element. That source code functions as a coordinative
language and as a functioning object at the same time, enhancing
communication even though these functions have not been deliberately
designed from the communication point of view.

Technological modularity demonstrates both potentially
intentional and unintended elements. When Linus Torvalds in the early
1990s started developing the Linux kernel, he probably did not have
technological modularity as one of his prime goals. Technological
modularity may often be the result of purposeful deliberation, but it may
also grow more organically during development. Irrespective of the
degree of intent, technological modularity enhances communication as
developers do not have to control the whole system at once. They can
focus their communication to a limited set of features they want to
develop. Another communication-aiding aspect of technological
modularity is the coordinative function of shared interfaces. They delimit
ways of communication and reduce the demand for versatile exchange of
ideas. When all parties share an interpretation of the central aspects of an
interface, they do not have to test the extent to which other parties share
this knowledge (disregarding the fact that discrepancies in their
interpretations may occur).

The unilateral right of the project initiator to function as the sole
selector seems intriguing as it does not necessarily convey the
conventionally desirable picture of functional efficiency. If the
conjecture of this paper holds that selection is not the central issue in
open source software development, since what matters most is the
continuous inflow of variations and discoveries, then the connection
between being the initiator of a project and receiving the property right
to the whole project through convention appears potentially unjustified
from the functional efficiency perspective.

 16

Conclusions

This paper has suggested that in open source software

development conventions play an important role in defining property
rights. Social contracts perform an equally important function in
preventing conflicting interests from destroying the cooperative mode of
interaction. The open source software itself brings elements of objective
knowledge and technological modularisation that enhance
communication and coordination. All these elements together reduce the
need for managerial control regarding both coordination of knowledge
and provision of incentives.

In this model, intentional elements do not seem to receive any
apparent priority. It is recognised, however, that the design of the initial
social contract plays a central role in facilitating open development.
Without its restrictions to non-reciprocal behaviour, open source
software would hardly have developed to what it is today. On the other
hand, it is equally important to recognise the source of social contract.
The designers did not genuinely discover the purpose of the Copyleft,
instead, they codified something that was already there in the form of
earlier conventions of the software developers’ community. By setting up
the Copyleft terms they wanted to continue what they perceived as
beneficial development which was under attack by the introduction of
the proprietary model.

The dependency of social contract upon convention becomes
apparent in the establishing process of a social contract. The Copyleft
would have been impossible to establish as a social contract unless the
members perceived its terms as fair and beneficial to development.
Although social contract is conceptually a product of intentional design,
its content is so strongly based on spontaneous development of
conventions that it becomes difficult to distinguish what parts of its
content are not already established by surrounding conventions.

A central question concerning the future of open source
development is: which one becomes the prevailing social contract,
Copyleft or OSD? If Copyleft wins out, then open source development
has better chances to remain genuinely open, at the cost of foregone
profits from the proprietary model. If the OSD/BSD becomes the social
contract, it may enhance the destruction of open source development
because the BSD license does not prohibit changes in the license itself,
even though the consequence might be the transformation from open to
closed source.

The option to take open source private and make profit has several
consequences. (1) The existence of the option per se changes incentive
structures as the members understand the dynamics of prisoners’
dilemmas. 2) Opportunities for defection lead to changes in expectation
about how other members will behave in the future. (3) The changed
expectations reinforce incentives to defect. An important aspect in this
process of incentive change is that the triggering element does not have
to be a real event. The fact that an option exists may be enough to bring
reluctance toward contributing to development that is vulnerable to
defection. Another important aspect in this development has to do with

 17

reference point consideration. If Copyleft did not exist as the initial
social contract, the members would not perceive OSD/BSD as a
potential deterioration of cooperation.

REFERENCES

BSD license, at http://www.opensource.org/licenses/bsd-license.html ,

retrieved 28 April 2001.

Crane, D. (1972) Invisible Colleges, Diffusion of Knowledge in Scientific

Communities. Chicago: University of Chicago Press.

Cusumano, Michael A. (1997) How Microsoft Makes Large Teams Work

Like Small Teams. Sloan Management Review, Fall, 9-20.

GNU General Public License (GPL), at

http://www.opensource.org/licenses/gpl-license.html , retrieved
28 April 2001.

Huberman, B. A. and Tad Hogg (1995) Communities of Practice:

Performance and Evolution. Computational and Mathematical
Organization Theory, 1, 73-92.

Hume, David (1969 [1740]) A Treatise of Human Nature. London: Penguin

Books.

Langlois, R. N. (2000) Modularity in Technology and Organization.

Paper presented at ‘Austrian Economics and the Theory of the
Firm’ conference, August 19-17, 1999, Copenhagen Business
School, second draft.

Lave, J. and E. Wenger (1991) Situated Learning: Legitimate Peripheral

Participation. Cambridge: Cambridge University Press.

Locke, John (1986 [1690]) The Second Treatise on Civil Government (first

published in: Two Treatises of Government [1690]). Buffalo, NY:
Prometheus Books.

Lewis, D. (1969) Convention: A Philosophical Study. Cambridge, MA:

Harvard University Press.

OSD (Open Source Definition), at

http://www.opensource.org/docs/definition.html , retrieved 28
April 2001.

Perens, Bruce (1999) The Open Source Definition, in Di Bona, Chris

and Sam Ockman (eds) Open Sources: Voices from the Open Source
Revolution. O'Reilly & Associates.

http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/gpl-license.html
http://www.opensource.org/docs/definition.html

 18

Popper, Karl R. (1972) Objective Knowledge. An Evolutionary Approach.
Oxford: Clarendon Press.

Raymond, Eric S. (1998) ‘Homesteading the Noosphere’, at

www.tuxedo.org/~esr/writings/homesteading/homesteading.txt ,
retrieved 10 March 2000.

Raymond, Eric S. (1999) ‘The Magic Cauldron’, at

www.tuxedo.org/~esr/writings/magic-cauldron/magic-
cauldron.txt retrieved 10 March 2000.

Rothbard, Murray N. (1982) The Ethics of Liberty. Humanities Press:

Atlantic Highlands.

Sanchez, Ron and Joseph T. Mahoney (1996) Modularity, Flexibility, and

Knowledge Management in Product and Organizational Design.
Strategic Management Journal, 17, 63-76 (Winter Special Issue).

Schelling, Thomas (1960) The Strategy of Conflict. Cambridge, MA: Harvard

University.

Stallman, Richard (1999) The GNU Operating System and the Free

Software Movement, in Di Bona, Chris and Sam Ockman (eds)
Open Sources: Voices from the Open Source Revolution. O'Reilly &
Associates.

Sugden, Robert (1986) The Economics of Rights, Co-operation and Welfare.

Oxford: Basil Blackwell.

Wow, 1 June 2000, at

http://www.wow.fi/WOW/16170007005437001466297393?path
=talous/juttu&document_id=164412 , retrieved 1 June 2000.

Wow, 28 Nov 2000, at

http://www.wow.fi/WOW/16170004005437001466297393?path
=talous/juttu&document_id=216395 , retrieved 28 April 2001.

http://www.tuxedo.org/~esr/writings/homesteading/homesteading.txt
http://www.tuxedo.org/~esr/writings/magic-cauldron/magic-cauldron.txt
http://www.tuxedo.org/~esr/writings/magic-cauldron/magic-cauldron.txt
http://www.wow.fi/WOW/16170007005437001466297393?path=talous/juttu&document_id=164412
http://www.wow.fi/WOW/16170007005437001466297393?path=talous/juttu&document_id=164412
http://www.wow.fi/WOW/16170004005437001466297393?path=talous/juttu&document_id=216395
http://www.wow.fi/WOW/16170004005437001466297393?path=talous/juttu&document_id=216395

