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Abstract

This paper applies six recently developed nonparametric tests of serial independence to monthly

US stock returns. Findings of previous studies based on the BDS test are supported since most

of the new tests also reject the random walk hypothesis. Furthermore, power properties of

the new tests are compared with those of the BDS test. The latter has much power against

ARCH and GARCH alternatives whereas some of the more recent tests are superior against

other alternatives. Finally, the power study of this paper shows, contrary to common belief,

that ARCH and GARCH effects do not seem to explain rejection of the random walk.



I. Introduction

This paper reexamines the random walk theory of stock prices by means of recently developed

nonparametric tests. In the early literature, the random walk received some support. This was

due to the first generation of nonparametric tests, for example the Runs test which was applied

to stock returns by Fama (1965). However, later research has shown that first generation tests

lack power against relevant alternatives to the random walk which is also demonstrated below

in the power simulations of section IV.

Subsequently, evidence has turned against the random walk theory. This is due to the

nonparametric BDS test which was proposed in the late 1980s. A number of studies have

documented that the BDS test rejects independence of stock returns, see f. ex. Hsieh (1991),

Pagan (1996), and Scheinkman and LeBaron (1989). Furthermore, the BDS test is more

powerful than the first generation tests. In particular, it has power against ARCH and GARCH

alternatives which are popular descriptions of stock returns, see the survey in Pagan (1996).

Recent research has produced a number of alternative tests of serial independence. The

main contribution of this paper is to apply a set of these second generation tests — including

the BDS test — to a common, standard time series of stock returns. This serves to explore

whether rejection of random walk for stock prices is sensitive to the choice of test procedure.

Furthermore, power properties of the tests are compared. This analysis provides guidance

on selecting the most powerful tests and as a byproduct we gain some insight into possible

reasons for rejection of the random walk.

The present study focuses entirely on testing the strong version of the random walk theory,

i.e., the hypothesis that stock returns are serially independent. Other papers deal with weaker

versions such as the specification of returns as uncorrelated, see Pagan (1996) for a survey

of this literature. Testing the random walk model is important for several reasons. First of

all, theoretical work on portfolio selection and asset pricing is often based on the assumption

that stock prices behave like a random walk. Secondly, rejection of the random walk has
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implications for investors who are trying to predict future stock returns. Thus, if returns are

dependent, then in principle there is scope for market timing based on the historical behavior

of stock prices.

The BDS test is documented in Brock et al. (1996). In the present paper, we study the

BDS test and six other second generation tests: Ahmad and Li (1997), Hjellvik and Tjøstheim

(1996) (two tests), Hong and White (2000), Robertson (1991), and Skaug and Tjøstheim

(1993). For completeness, results on the Runs test are also included.

We suggest to group the second generation tests in two classes: One class contains tests

based on distribution functions, and the other consists of tests based on density functions.

The latter may be further divided into tests of difference between bivariate and product of

marginal densities, entropy based tests, and tests involving conditional moments. Due to the

very different nature of the tests, it is not obvious that they spawn similar inference.

The following section introduces the nonparametric tests applied in the paper. Section III

presents the data and test results. Section IV contains power simulations. Finally, conclusions

are offered in section V.

II. Nonparametric tests of serial independence

Our starting point is a time series of stock returns,Rt , t = 1;2; :::;T . From this we construct

log returns,Xt = ln(1+Rt). The random walk hypothesis implies thatXt is independent of

Xt�1. In principle, a random walk also implies that log return is independent of longer lags.

However, for the sake of clarity we restrict attention to the first lag only.

Nonparametric tests of independence may be classified as based on either distribution or

density functions. This paper includes one from the former class of tests and six from the

latter. The following sections present the tests considered in this paper. Each test considers

a particular measure of departure fromH0. This measure is in most cases normalized to
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obtain an asymptotically normal null distribution of the test statistic. However, large sample

performance has been shown to be poor for many of the tests, see f.ex. Skaug and Tjøstheim

(1996). Therefore, we have chosen to simulate critical values by Monte Carlo. This ensures

correct size across tests. The poor large sample performance is also the reason for not going

into details with normalizations in the present section.

A. A test based on distribution functions

Skaug and Tjøstheim (1993) consider an intuitive and easily computable test which is based

on distribution functions. Consider the marginal distribution function,G(x) = Pr(Xt � x), and

the bivariate distribution function,F(x;y) = Pr(Xt�1 � x;Xt � y). Independence ofXt and

Xt�1 is equivalent toF(x;y) = G(x)G(y) for almost allx;y. Thus, it is natural to study:

IST
=

Z
fF(x;y)�G(x)G(y)g2dF(x;y) (1)

sinceIST
= 0 if and only if Xt andXt�1 are independent.IST is estimated by inserting the

empirical distribution functions,GT (x) = 1
T ∑T

t=11(Xt � x) andFT (x;y) = 1
T�1 ∑T

t=21(Xt�1 �

x)1(Xt � y) where 1(�) is the indicator function.GT (x) is the frequency of log returns less

thanx andFT (x;y) is the frequency of pairs of lagged returns and returns less thanx andy

respectively. Hence, the resulting test statistic is:

IST
T =

1
T �1

T

∑
t=2
fFT (Xt�1;Xt)�GT (Xt�1)GT (Xt)g

2 (2)

The test is a measure of closeness of the empirical bivariate and product of marginal dis-

tributions, and the random walk hypothesis is rejected ifI ST
> 0. In addition to its simplicity,

this test is attractive because it does not require the researcher to choose any parameters. As

we shall see in the sequel, the ST test is the only test considered here which has this feature.
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B. Tests based on density functions

In this section, we consider a number of tests which are based on the assumption that marginal,

g(�), and bivariate,f (�; �), density functions exist. This assumption allows us to test hypotheses

that are based on densities. For example, an obvious test of independence is to examine

whether f (x;y) = g(x)g(y) for almost allx;y. This is the approach of the tests mentioned in

sections B.1 and B.2. An alternative approach is to verify if the conditional mean or variance

of Xt given a certain value ofXt�1 is equal to the unconditional mean or variance. This idea is

pursued by the tests presented in section B.3.

Before proceeding to the presentation of tests, we briefly consider some issues in relation

to density estimation. There is a huge literature on optimal estimation of densities, see f.ex.

Pagan and Ullah (1999). This literature provides rules for choosing kernels and bandwidths.

Since the focus of the present paper is a comparison of independence tests rather than density

estimation, we pursue a unified approach to density estimation which may be applied to all

the tests. Here is a brief discussion of the kernels and bandwidths used in this paper.

The role of the kernel is to provide a weighting of the observations when estimating a

density. Suppose we wish to estimate the (marginal) density of returns at a pointx. Then a

straightforward procedure is to compute the frequency of observations,Xt , within a distance

of a
2 from x. Alternatively, this may be expressed as the frequency of observations for which

�1
2 <

x�Xt
a <

1
2. This procedure is called the uniform kernel because each observation (within

a
2 from x) receives the same weight.a is called the bandwidth. Better estimates of the density

are obtained by attaching greater weight to observations that are closer tox and less weight

to observations far fromx. A number of different kernels are available for this purpose. One

example is to assign weights according to the standard normal density. Thus, for each ob-

servation, the standard normal density is evaluated atx�Xt
a and the density of returns atx is

estimated as the sum across all observations relative tona. This is referred to as the standard

normal kernel. Whenx itself belongs to the sample, it is customary to exclude that element
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(whereXt = x) from the sum in order to preclude effects of outliers on the estimate. This is

called the leave-one-out method.

We apply the standard normal kernel to all densities except for two cases. The BDS test is

originally developed with a uniform kernel and, hence, we follow that tradition. We also devi-

ate from the standard normal kernel in our application of the Hong-White test because in that

case the authors explicitly suggest using an alternative kernel, cf. section B.2. Furthermore, it

should be noted that we use the leave-one-out approach for all tests.

Based on the literature on bandwidth selection, we choose to set bandwidth equal to

σX T�1=5 (except for the BDS test which treats bandwidth in a special way, cf. below). This

standard choice meets the requirement that bandwidths vanish as sample size tends to infin-

ity. Hence, observations not close tox are ignored as the sample expands. Furthermore, this

bandwidth has been shown under certain conditions to balance the tradeoff between bias and

variance of density estimates, cf. Pagan and Ullah (1999), p. 26.

The following subsections discuss density based tests. The tests are grouped into three

categories: Difference between bivariate and product of marginals, entropy, and conditional

moment tests.

B.1. Tests of difference between bivariate and product of marginals

This section describes the widely used BDS test discussed by Brock et al. (1996) and the test

analyzed in Ahmad and Li (1997). Both tests deal with the null hypothesisf (x;y) = g(x)g(y).

The most obvious approach is to consider the mean departure fromH0:

IBDS
=

Z Z
f f (x;y)�g(x)g(y)gdF(x;y) (3)

and reject the random walk hypothesis ifIBDS 6= 0. Under the null, this may be written as:
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IBDS
=

Z Z
f (x;y)dF(x;y)� (

Z
g(y)dG(y))2 (4)

Pagan (1996) makes the useful observation that the BDS test described by Brock et al.

(1996) is based on an estimate of (4):

IBDS
T =

1
T �1

T

∑
t=2

fT (Xt�1;Xt)� (
1
T

T

∑
t=1

gT (Xt))
2 (5)

where fT (�; �) and gT (�) denote estimates of bivariate and marginal densities. Notice, that

although in principle the standard normal kernel may be used, we follow Brock et al. (1996)

by applying the uniform kernel.

The BDS test statistic involves a scaling of (5) (see Pagan, 1996) and normalization by the

estimated standard deviation ofIBDS
T . In order to apply the test, a value must be chosen for

the parameterε which has the interpretation of a bandwidth. We letε = σX , whereσX is the

sample standard deviation of log returns. This conforms to the choice ofε in Hsieh (1991).

In contrast to the following tests, the asymptotics of BDS are developed under the assumption

that the bandwidth does not vanish as sample size increases.

A related test considered by Ahmad and Li (1997) examines the following squared measure

of deviation from the null hypothesis:

IAL
=

Z Z
f f (x;y)�g(x)g(y)g2dxdy

=

Z Z
f f (x;y)dF(x;y)+

Z
g(x)dG(x)

Z
g(y)dG(y)�2

Z Z
g(x)g(y)dF(x;y)

(6)

IAL is estimated by:
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IAL
T =

1
T �1

T

∑
t=2

fT (Xt�1;Xt)+
1

(T �1)2

T

∑
t=2

gT (Xt�1)

T

∑
t=2

gT (Xt)�2
1

T �1

T

∑
t=2

gT (Xt�1)gT (Xt)

(7)

It is illuminating to compare the AL and BDS tests. Rewrite (6) as:

IAL
= IBDS�

Z
g(x)g(y)dF(x;y)+

Z
g(x)dG(x)

Z
g(y)dG(y)

= IBDS�

Z Z
g(x)g(y)f f (x;y)�g(x)g(y)gdxdy

(8)

The extra term is zero under the null. In finite samples, however,IAL generally differs from

IBDS. Thus, the two tests may produce conflicting inference beyond differences due to kernel

and bandwidth discrepancies.

B.2. Entropy based tests

Entropy based tests consider the measure:

I =
Z

ln
�

f (x;y)=g(x)g(y)
�

dF(x;y) (9)

This measure is nonnegative and equal to zero if and only ifH0 is true. It may be estimated

the usual way by inserting density estimates. However, this approach does not have a limiting

normal null distribution. Therefore, certain changes to (9) have been proposed.

Robinson (1991) introduces a split of the sample:

IRob
T =

1
Tγ�1

T

∑
t=2

ct(γ)ln
�

fT (Xt�1;Xt)=g(Xt)
2
�

(10)
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where
�

ct(γ);Tγ

�
equals

�
1+ γ;T + γ

�
whent is odd, and

�
1� γ;T

�
whent is even,γ� 0.

If the estimated bivariate density is nonpositive for somet, logarithms cannot be taken. Thus,

such cases are excluded from the sum. We chooseγ= 1 and the parameterδ which is used to

normalizeIRob
T is set equal to 0.

The strategy of Hong and White (2000) is to avoid the nuisance parameter,γ. They show

that a limiting normal null distribution may be obtained from direct estimation of (9) by sub-

traction of a nonzero mean and proper scaling. They use a higher-order (socalled quartic)

kernel rather than the standard normal kernel described above. We follow their suggestion and

apply the same kernel to this test. Furthermore, this test requires a rescaling of the data onto

[0;1] and the use of a jack-knife (see Hong and White, 2000) kernel near the boundary of this

interval.

B.3. Tests involving conditional moments

Hjellvik and Tjøstheim (1996) propose two tests that are based on mean and variance of returns

conditional on lagged return. If the hypothesis of independence is correct, then the conditional

moment equals the unconditional moment. Hence, this comparison forms the basis of the tests.

The conditional mean ofXt givenXt�1 = x is defined as:

M(x) =
Z

y f (x;y)=g(x)dy (11)

In the application of this test,Xt is demeaned and, hence,M(x) = 0 if Xt is independent.

Thus, we consider

IHTM
=

Z
M2

T (x)g(x)w(x)dx (12)
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whereMT (x) is a kernel based estimate ofM(x) andw(�) is a weight function to screen off

extreme values (we follow the suggestion of Hjellvik and Tjøstheim and letw(x) exclude all

observations greater than 3). The null hypothesis is rejected ifIHTM
> 0.

IHTM is estimated by

IHTM
T =

1
T �1

T

∑
t=2

M2
T Xtw(Xt) (13)

Similarly, we may consider the conditional variance:

V (x) =
Z

y2 f (x;y)=g(x)dy�M2
(x) (14)

Xt is rescaled to have sample standard deviation equal to 1. Thus, the test statistic is based

on the squared deviation of the conditional variance from 1:

IHTV
T =

Z n
V (x)�1

o2
g(x)w(x)dx (15)

and the null is rejected ifIHTV
T is greater than 0.

III. Data and test results

We consider monthly total returns (i.e., including dividends) on the US large cap stock index

from Ibbotson Associates (2000). This series is based on the S&P Composite which currently

includes 500 large stocks; prior to 1957 it consisted of 90 large stocks. The sample period is

January 1926 to December 1999. Thus, the total number of observations isT = 888.

Table I applies the seven tests described above plus the Runs test to the Ibbotson data

set. Critical values for the tests at 5% significance level are also included in table I. In order
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to ensure the same significance level across tests, we have chosen to simulate critical values

rather than rely on asymptotic distributions. The first step in this simulation is to estimate the

sample mean,µX ;T , and standard deviation,σX ;T , of log returns. Then 1000 samples withT

IID observations are generated by the following model:

Xt = µX ;T +σX ;T εt; εt � NID(0;1)

Finally, each test is applied to all 1000 samples and the critical value is taken to be the

95% quantile of the set of absolute test statistics.

Table I includes results on both log of raw returns,Xt, and log of excess returns, ln(1+

Rt �RFt), whereRFt is total return on US T-Bills (from Ibbotson, 2000). Consider first the

Runs test which was applied on stock returns by Fama (1965). This test counts the number of

sequences of positive and negative returns (=Runs) in the sample. Properly normalized, this

number is standard normal distributed, see Wallis and Roberts (1956). Table I shows that the

Runs test does not reject the random walk hypothesis for the S&P Composite index. This is

compatible with Fama’s conclusion which is based on an analysis of individual stocks at time

intervals up to 16 days.

On the other hand, later studies show that the BDS test rejects the random walk of stock

prices, e.g. Hsieh (1991), Pagan (1996), and Scheinkman and LeBaron (1989). This result is

also confirmed by table I since the BDS statistics for raw and excess returns are clearly greater

than the BDS critical value. Most researchers prefer the BDS test to the Runs test because of

its better power characteristics. We return to this issue in the following section.

Finally, table I contains new evidence based on the recently developed tests. As seen

in the table, independence is rejected at the 5% level by the AL, HTV, HW, Rob, and ST

tests whereas only the HTM test lends some support to the hypothesis by not rejecting in

case of raw returns. Thus, the recent nonparametric tests of independence tend to uphold

the BDS rejection. Hence, table I adds to the evidence against the random walk hypothesis.
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In the following section, we explore power properties and draw inference from the observed

rejection pattern.

IV. Power simulations

This section provides Monte Carlo simulations to examine power of the nonparametric tests

of independence. We estimate a number of parametric models that are supposed to capture

relevant aspects of stock return processes. Then the power of each test against these parametric

alternatives is evaluated. Also, we compare power results with the rejection pattern described

in the previous section to infer characteristics of the true data generating process.

Ten different models are considered: Autoregression with 1 lag (AR1), moving average

with 1 lag (MA1), nonlinear moving average (NMA), threshold autoregression with 1 lag

(TAR), autoregressive conditional heteroskedasticity with 1 lag (ARCH), generalized autore-

gressive conditional heteroskedasticity with 1 lag (GARCH). Furthermore, the analysis in-

cludes four versions of two-states Markov-switching: Different mean across states (MS1),

different variance across states (MS2), different mean and variance across states (MS3), dif-

ferent mean, variance and autoregressive term across states (MS4).

All models are estimated by numerical maximum likelihood. Results are shown in table II.

The estimated models are used to generate 1000 time series and compute rejection frequencies

for each of the tests. The results of this work is presented in table III. We emphasize that power

results to some extent depend on the parameters chosen. However, we believe that estimation

of parameters provides a sensible, practical solution to that problem.

We notice that the BDS test is particularly powerful against ARCH and GARCH models.

Since these models are often thought to be relevant for financial time series, the BDS test is a

good choice in this context. BDS also has some power against regime switching models. Since

the BDS test was the first test to question the original results of the Runs test, it is relevant to
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compare those two tests. Table III shows that the BDS test is clearly superior to the Runs test

in the lower half of the table. This explains why failure to reject by the Runs test is not a very

strong result.

HTV seems to be the most powerful alternative to BDS. It has more power against MS1

and also appears to be marginally preferable against the other regime-switching alternatives

considered here. On the other hand, it is weaker when the alternative is ARCH or GARCH.

HTM does not fail completely against any of the alternatives. Hence, judging on the basis

of table III, the failure of HTM to reject the random walk for raw returns must be due to

chance.

The results of the Robinson test are disappointing. It has very low power against many

alternatives including ARCH and GARCH. Thus, the fact that the Robinson test does reject

H0 is not likely to be explained by ARCH or GARCH effects in the data. In our view, this

is one of the most interesting implications of the present study because of the popularity en-

joyed by ARCH and GARCH models in recent years. In fact, rejection by BDS combined

with its power against ARCH/GARCH led many researchers to believe that conditional het-

eroskedasticity effects are the cause of rejection, see e.g. Hsieh (1991) and Scheinkman and

LeBaron (1989). A very important topic for future research is to identify aspects of the data

that leads the Robinson test to reject. As a final point concerning the Robinson test, it should

also be noted that the alternative entropy-based test by Hong and White clearly seems to offer

an improvement of the Robinson test.

Finally, the tests generally have low succes against autoregressive and moving average

alternatives, ie., AR1, MA1, NMA, and TAR. This is due to the small estimated coefficients

of these models which on the other hand indicates that AR and MA effects are small in the

sample. In simulations not reported here, we find that the models are powerful against AR1,

MA1, and TAR when coefficients are greater and that BDS and HTV are capable of detecting

NMA. It appears that ST has more power against autoregressive and moving average models

than the other tests. This may suggest using ST as a supplement to other tests when analyzing
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financial data. However, ST should not be applied in isolation because of its inability to

capture GARCH and regime-switching.

V. Conclusion

This paper extends the previous literature on the random walk of stock prices by comparing

the originally used BDS test with six recently developed nonparametric tests. The rejection

derived on the basis of the BDS test is confirmed by the new tests.

The BDS has relatively much power against ARCH and GARCH alternatives. Besides, it

is shown that the HTV test is powerful against regime-switching alternatives and that the ST

test performs well with autoregressive and moving average models. Hence, combined use of

these three tests is suggested for analysis of stock returns.

Another important finding is that the random walk is rejected by the Robinson test which

has almost no power against ARCH and GARCH. This implies that other aspects of the data

are likely to explain why the random walk does not hold. Since much of the literature has

focused on ARCH and GARCH, more research is needed to account for this result.

Finally, it may be appropriate to mention a few possible extensions. First, other parametric

models than those considered in our power simulations may be relevant. Second, the analysis

may be extended to independence at longer lag lengths. This would allow for an assessment

of whether returns are also dependent beyond the one month horizon studied in this paper.
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Table I: Test statistics with monthly total returns

This table presents statistics of the Ahmad-Li, BDS, Hjellvik-Tjøstheim M, Hjellvik-Tjøstheim V,

Hong-White, Robinson, Runs, and Skaug-Tjøstheim tests applied to monthly raw and excess returns,

S&P Composite, 01.1926-12.1999. The final column reports simulated critical values at 5% signifi-

cance level in 1000 samples of 888 observations. Simulation is based on IID process with empirical

mean and variance (raw return). Rejection at the 5% level is marked by an asterisk. Probability values

in parentheses.
Raw return Excess return Critical value

AL 1:6* 1:7* 1:3

(0:026) (0:019)

BDS 6:6* 6:7* 2:0

(0:000) (0:000)

HTM 0:10 0:14* 0:13

(0:615) (0:006)

HTV 0:60* 0:47* 0:22

(0:000) (0:000)

HW 7:5* 9:3* 6:3

(0:013) (0:000)

Rob 4:6* 3:8* 2:5

(0:000) (0:003)

Runs 0:84 1:3 1:9

(0:384) (0:182)

ST 0:060* 0:065* 0:057

(0:041) (0:030)
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Table II: Estimated parametric models

This table presents estimates of the following models applied to monthly raw returns, S&P Composite,

01.1926-12.1999: AR1, MA1, NMA, TAR, ARCH, GARCH plus four different two-states Markov-

switching models: Different mean across states (MS1), different variance across states (MS2), different

mean and variance across states (MS3), different mean, variance and autoregressive term across states

(MS4). εt � NID(0;1).

AR1 Xt = 0:0083+0:075Xt +0:056εt

MA1 Xt = 0:0090+0:076εt�1+0:056εt

NMA Xt = 0:0090�0:10εt�1εt�2+0:056εt

TAR Xt =

(
0:0076+0:071Xt�1+0:055εt if j Xt j� 0:25

0:12+0:077Xt�1+0:055εt else

ARCH Xt = 0:0072+0:26Xt�1+ut

ut = h1=2
t εt

ht = 0:0021+0:41u2
t�1

GARCH Xt = 0:010+0:03Xt�1+ut

ut = h1=2
t εt

ht = 0:000064+0:87ht�1+0:12u2
t�1

MS1 Xt j st = 1 = 0:013+0:048ε1t

Xt j st = 2 =�0:019+0:048ε2t

p11= 0:98; p22 = 0:23;π1 = 0:98

MS2 Xt j st = 1 = 0:012+0:12ε1t

Xt j st = 2 = 0:012+0:038ε2t

p11= 0:94; p22 = 0:99;π1 = 0:12

MS3 Xt j st = 1 =�0:015+0:12ε1t

Xt j st = 2 = 0:012+0:038ε2t

p11= 0:93; p22 = 0:99;π1 = 0:12

MS4 Xt j st = 1 =�0:014+0:094Xt�1+0:12ε1t

Xt j st = 2 = 0:013�0:0047Xt�1+0:038ε2t

p11= 0:93; p22 = 0:99;π1 = 0:12
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Table III: Size-corrected power of test statistics, 5% level

This table presents percentage rejection frequencies of the Ahmad-Li, BDS, Hjellvik-Tjøstheim M,

Hjellvik-Tjøstheim V, Hong-White, Robinson, Runs, and Skaug-Tjøstheim tests when the true process

is AR1, MA1, NMA, TAR, ARCH, GARCH, MS1, MS2, MS3, MS4. Results are based on 888

observations and 1000 replications.
AL BDS HTM HTV HW Rob Runs ST

AR1 8 8 15 5 6 4 25 55

MA1 7 7 12 5 7 4 25 52

NMA 5 7 7 5 4 6 5 5

TAR 7 7 14 6 5 5 22 51

ARCH 100 100 99 94 62 3 99 100

GARCH 43 99 77 86 43 5 7 32

MS1 3 6 32 18 6 4 4 7

MS2 22 95 90 100 78 11 4 14

MS3 19 97 91 100 83 9 5 22

MS4 19 96 82 100 82 10 6 31
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