Essays on Market Design

Yun Liu

September 2016

Supervisors: Peter Bogetoft and Dolores Romero Morales
PhD School in Economics and Management
Copenhagen Business School
“The Doctoral School of Economics and Management is an active national and international research environment at CBS for research degree students who deal with economics and management at business, industry and country level in a theoretical and empirical manner”.
This Ph.D. thesis is composed of four independent research papers in the field of Market Design. It begins with a general introduction for all four papers and ends with a brief conclusion. In this thesis, I study the impact of heterogeneous market participants on allocation outcomes in different market mechanisms; in addition, how to design alternative mechanisms that can more effectively allocate scarce resources with diverse economic and social goals.

Chapter 1 studies the impact of affirmative action policies in the context of school choice. It addresses the following two questions: what are the causes of possible perverse consequence of affirmative action policies, and when the designer can effectively implement affirmative actions without unsatisfactory outcomes. Using the minority reserve policy in the student optimal stable mechanism as an example, I show that two acyclicity conditions, type-specific acyclicity and strongly type-specific acyclicity, are crucial for effective affirmative action policies. However, these two cycle conditions are almost impossible to be satisfied in any finite market in practice. Given the limitation of the point-wise effectiveness in finite markets, I further illustrate that the minority reserve policy is approximately effective in the sense that the probability of a random market containing type-specific cycles converges to zero when the copies of schools grow to infinite.

Chapter 2 addresses the question of how ex ante asymmetry affects bidders’ equilibrium strategies in two popular multi-unit auction rules: uniform-price auction (UPA) and discriminatory-price auction (DPA). I characterize the set of asymmetric monotone Bayes-Nash equilibria in a simple multi-unit auction game in which two units of a homogeneous object are auctioned among a set of bidders. I argue that bidders’ strategic behavior essentially comes from their diverse market positions (i.e., the winning probability and the probability of deciding the market-clearing price). That is, if a bidder has a relatively strong market position, she has less incentive to shade her bid for the
second unit in a UPA, whereas in a DPA, weaker bidders tend to bid more aggressively on both of two units. Following Chapter 2, Chapter 3 further analyzes and contrasts bidders’ collusion incentives at the ex ante stage. My results indicate that the UPA is more vulnerable to collusion than the DPA in term of the expected per-member payoff and the core-stability.

In the last chapter, I show that a variant of the Vickrey-Clarke-Groves auction, Ausubel’s clinching auction, is vulnerable to collusion in the sense that it always has a non-empty core. I further discuss an isomorphism relation between group strategy-proofness and non-bossiness in allocation, and the incompatibility between efficient allocation and non-bossiness in finite auction markets.
Denne Ph.d. afhandling består af fire uafhængige forskningsartikler inden for Market Design. Den begynder med en generel introduktion af alle fire artikler og slutter med en kort konklusion. I denne afhandling undersøger jeg heterogene markedsdeltageres påvirkning af tildelingsudfaldet for forskellige markedsmekanismer; desuden undersøger jeg, hvorledes det er muligt at designe alternative mekanismer, der mere effektivt kan afsætte knappe ressourcer med forskellige økonomiske og sociale mål.

Kapitel 1 undersøges virkningen af positive særbehandlingspolitikker i forbindelse med et faggruppevalg. Den behandler følgende to spørgsmål: hvad er årsagerne til sådanne unaturlige konsekvenser, og hvorledes kan designeren effektivt gennemføre en positiv særbehandlingspolitik uden utilfredsstillende resultater. Ved brug af mindretals forbeholdspolitik i elevens optimale og stabile mekanisme som et eksempel, påviser jeg, at to acykliske betingelser, skrive-specifik acyklisitet og stærkt skrive-specifik acyklisitet, er afgørende for effektive positive særbehandlingspolitikker. Disse to cyklusbetingelser er i praksis næsten umulige at få opfyldt i ethvert begrænset marked. I betragtning af den punktuelle begrænsning af effektivitet i begrænsede markede, illustrerer jeg yderligere, at mindretals forbeholdspolitik er næsten effektiv i den forstand, at sandsynligheden for, at et tilfældigt marked indeholder skrive-specifikke cykler nærmer sig nul, når kopier af skolerne vokser til det uendelige.

Kapitel 2 omhandler spørgsmålet om, hvordan forudgående asymmetri påvirker tilbudsgivernes ligevægtsstrategier i to populære multi-enheds auktionsregler: ensartet pris auktion (uniform-price auction, UPA) og diskriminerende pris auktion (discriminatory-price auction, DPA). Jeg karakteriserer først et sæt af asymmetriske monotone Bayes-Nash ligevægter i en enkelt multi-enheds auktion, hvor to enheder af et homogent objekt bortauktioneres blandt sæt af tilbudsgivere og argumenterer for, at tilbudsgivernes strategiske adfærd væsentligst kommer fra deres forskellige markedsposition (dvs. den vindende
sandsynlighed og sandsynligheden for at fastlægge markedsens slutpris). Det vil sige, at hvis en tilbudsgiver har en forholdsvis stærk markedsposition, har denne et mindre incitament til at skjule sit bud over for en anden enhed i UPA’en, mens der for svagere tilbudsgivere i en DPA er tendens til at byde mere aggressivt på begge af to enheder.

Efter kapitel 2, kapitel 3 yderligere analyser og kontraster tilbudsgiveres incitamenter for aftalt spil på forudgående trin. Mine resultater viser, at UPA er mere sårbare over for aftalt spil end DPA på grund af det forventede payoff per medlem og grundstabiliteten i det forudgående trin.

I det sidste kapitel viser jeg, at en variant af Vickrey-Clarke-Groves-auktioner, Ausubel’s clinching auktionen, er sårbare over for aftalt spil i den forstand, at den altid har en ikke-tom kæde. Jeg drøfter yderligere en isomorfisk relation mellem koncernens strategibeskyttelse og ikke-dominans i allokeringen, og uføremødet mellem en effektiv allokering og ikke-dominans i begrænsede auktionsmarkeder.
3.3 Results 79
3.4 Conclusion 83
3.5 Appendix for Chapter 3 83

4. Stable Coalition in Multi-item Auctions .. 91
4.1 Introduction 91
4.2 Model 94
4.3 Vulnerability to Collusion 96
4.4 Non-bossiness 99
4.5 Conclusion 101
4.6 Appendix for Chapter 4 101

Conclusion .. 105
INTRODUCTION

Market design is an emerging field in the past few decades with wide practical successes. Its initial motivation is to provide feasible solutions to improve extant market mechanisms or create new markets conforming to different social and economic objectives. Like the relation of physics to engineering, compared with the traditional scope of mechanism design theory, market design problems demand more attentions to the details encountered in practice.\(^1\)

In my Ph.D. thesis, I study the impact of heterogeneous market participants on allocation outcomes in different market mechanisms; in addition, how to design alternative mechanisms that can more effectively allocate scarce resources with diverse economic and social goals.\(^2\) Two particular kinds of heterogeneity are studied in this thesis. One comes from players’ exogenous differences, such as market incumbents and socioeconomic-privileged groups with inherited competitive advantages. The other kind of heterogeneity is induced by players’ coalitional strategic behavior, i.e., several players may have incentives to misreport their valuations in a coordinated way, and split the coalitional gains among themselves.

Chapter 1 (entitled “On Effective Affirmative Action in School Choice”) studies the impact of affirmative action policies in the context of school choice. The purpose of affirmative action in school choice is to create a more equal and diverse social environment, i.e., granting students from disadvantaged social groups preferential treatments in

1 A mechanism design problem is a specification of a message space for each individual and an outcome function that maps vectors of messages into social decisions and transfers. A market design problem focuses on implementing mechanisms into particular real-world markets. I classify those markets allowing monetary transfer as the auction design problem, and those markets without a price signal as the matching design problem. For example, governments use open market auctions to allocate radio spectrum, timber, electricity, and natural gas involving hundreds of billions of dollars worldwide (Milgrom, 2004, Krishna, 2009); for matching, noticeable applications include entry level labor market, school choice, paired kidney exchanges, among others (Roth and Sotomayor, 1990, Roth, 2008, Kojima, 2015).

2 e.g., allocation efficiency, revenue optimality, budget balance, strategy-proofness, collusion-proofness, envy-free, among others.
school admission decisions to maintain racial, ethnic or socioeconomic balance. Recent
evidences from both academia and practice, however, indicate that implementing affirm-
ative action policies in school choice problems may induce substantial welfare loss on the
purported beneficiaries (Kojima, 2012, Hafalir et al., 2013, Ehlers et al., 2014, Fragiadakis
and Trojan, 2015). Using the minority reserve policy (Hafalir et al., 2013) in the student
optimal stable mechanism (SOSM) (Gale and Shapley, 1962, Abdulkadiroğlu, 2005) as an
example, this paper addresses the following two questions: what are the causes of such
perverse consequence, and when the designer can effectively implement affirmative action
policies without unsatisfied outcomes.

The minimal requirement of an effective affirmative action is that it should not make
at least one minority student strictly worse off, while leaves all the rest minority students
weakly worse off. I first show that a variant of the Ergin-acyclicity structure (Ergin,
2002), type-specific acyclicity, is necessary and sufficient to guarantee this minimal effec-
tiveness criterion in a stable matching mechanism. Next, I introduce a more demanding
effectiveness criterion which requires implementing a (stronger) affirmative action does
not harm any minority students. I show that a stable mechanism makes no minority
students strictly worse off if and only if the matching market is strongly type-specific
acyclic. These two findings clearly reveal the source of perverse affirmation actions in
school choice, which also imply that such adverse effects are not coincidences but rather a
fundamental property concealed in the market structures. I then response to the second
question such that when the designer can effectively implement affirmative action policies
without unsatisfied outcomes. My results imply that the real-world school choice markets
are almost impossible to be neither type-specific acyclic nor strongly type-specific acyclic.

Given the limitation of the point-wise effectiveness in finite markets, I further illustrate
that the minority reserve policy is approximately effective in the sense that the probabil-
ity of a random market containing type-specific cycles converges to zero as the copies of
schools grow to infinite. At the policy level, these results suggest that instead of discrimi-
inating majority students through affirmative actions, i.e., exchanging the welfare gain of
some minority students from impairing other students, an alternative policy practice to
rebalance education opportunities is to increase the supply of high-quality schools.

Chapter 2 (entitled “Multi-unit Auction with Ex Ante Asymmetric Bidders: Uniform
addresses the question of how ex ante asymmetry affects bidders’ equilibrium strategies in two popular multi-unit auction rules: uniform-price auction (UPA) and discriminatory-price auction (DPA). Partly because of their intrinsic analytic complexity, most existing literature of multi-unit auctions is restricted to the symmetric environment in which all bidders have identical value distributions (Engelbrecht-Wiggans and Kahn, 1998a,b, Chakrabarty, 2006, McAdams, 2006, Bresky, 2008). Symmetry gives a proper abstraction of the complex market environment when there are many small bidders. However, in circumstances with only a handful of qualified bidders (e.g., procurement auctions), asymmetry may become a more reasonable assumption.

This paper studies an auction market in which two units of an identical and indivisible good are sold to a set of ex ante asymmetric bidders, each with diminishing marginal values for the successive units. I say a bidder is stronger in the sense that she is more likely to have higher values for both units of the good than a weaker bidder, and vice versa. Such a feature is captured by imposing a standard conditional stochastic dominance property to bidders’ value distributions. I argue that bidders’ distinct strategic behavior essentially comes from their diverse market positions (i.e., the winning probability and the probability of deciding the market-clearing price). Instead of deriving a system of differential first-order conditions for the DPA and the UPA, which quickly becomes intractable given its multi-dimensional nature, I identify the comparative statics of equilibrium sets between two asymmetric bidders through the changes of their relative market positions. In brief, my results show that if a bidder has a relatively strong market position, she has less incentive to shade her bid for the second unit in a UPA; whereas in a DPA, weaker bidders tend to bid more aggressively on both of two units.

Following Chapter 2, Chapter 3 (entitled “Ex Ante Coalition in Multi-unit Auctions”) further investigates and contrasts bidders’ collusion incentives in the UPA and the DPA at the ex ante stage. I am interested in which of the two auction mechanisms is more likely to boost collusion incentives by investigating bidders’ ex ante formation of coalitions as bidding rings (Marshall et al., 1994, Waehrer, 1999, Bajari, 2001, Kim and Che, 2004, Biran and Forges, 2011).

See, for example, Lebrun (1999), Waehrer (1999), Maskin and Riley (2000) and Cantillon (2008), which have used this property to study asymmetric single-unit auctions.

A bidding ring is composed of a group of bidders whom agree to collude together in order to gain
I first contrast bidders’ collusion incentives from the perspective of the *expected per-member payoff*. I argue that the UPA is more vulnerable to collusion than the DPA as each bidder’s expected payoff is unanimously increasing (resp. decreasing) in the UPA (resp. DPA) with the size of the coalition she belongs to. However, higher expected per-member payoffs still cannot prevent bidders’ joint incentives to deviate from their current coalitions. I further shows that regardless of the sizes of their current coalitions in the UPA, no subgroups of bidders would like to collectively deviate from their current coalition once it is formed; by contrast, except for the grand coalition, all bidders would prefer staying in a smaller coalition to their current coalitions in the DPA. These results contribute to the literature by providing new evidences in the choice between the UPA and the DPA apart from comparing their revenue difference, which also offer new insights into the regulation of anti-competitive behavior in auction markets beyond the single-unit case.

Chapter 4 (entitle “Stable Coalition in Multi-item Auctions”) illustrates the coalition formation processes in a variant of the Vickrey-Clarke-Groves auction, the Ausubel’s *clinching auction* (Ausubel, 2004). Compared with the commonly used simultaneous sealed-bid auctions in markets with multiple objectives (e.g., the uniform-price auction and the discriminatory-price auction), the clinching auction offers an open ascending-bid alternative with a clear improvement in allocation efficiency while maintaining simplicity to perform in practice.

The primary motive of this paper is to explore whether colluders can cooperatively facilitate a feasible revenue division scheme among themselves in auction markets with multiple *non-identical* objects.\(^5\) I first show that the clinching auction is vulnerable to collusion in the sense that it always has a non-empty core, i.e., all colluders perceive higher returns from staying in the current coalition compared to all other alternatives. Under a mild *super-additive* assumption of the coalition gains, the *grand coalition* containing all bidders will eventually be formed in equilibrium regardless of the former divisions of sub-

\(^5\) Notice that different from the multi-unit auctions with more than one unit of a homogeneous good on sale, the objects are not necessarily identical to each other in multi-item auctions. Some prominent real-life examples include selling advertisement slots for search engines, FCC spectrum auctions, among others.
coalition groups. Thus, although the clinching auction guarantees efficient allocations as the VCG auction, caution should be exercised when applying it in markets where secret coalitions are highly suspicious. I further argue that a non-bossy condition (Satterthwaite and Sonnenschein, 1981) is crucial to such vulnerability, and illustrate the intrinsic tension among efficiency, truthfulness, and non-bossiness in auction mechanisms.

Bibliography

Richard Engelbrecht-Wiggans and Charles M Kahn. Multi-unit pay-your-bid auctions

6 Super-additivity implies that the joint gain of two merged coalition groups should be no less than the sum of each coalition group, i.e., for two coalition groups A and B, \(v(A + B) \geq v(A) + v(B) \).

Fuhito Kojima. Recent developments in matching theory and its practical applications. 2015.

1. ON EFFECTIVE AFFIRMATIVE ACTION IN SCHOOL CHOICE

Yun Liu*

Abstract: Recent evidence, from both academia and practice, indicates that implementing affirmative action policies in school choice problems may induce substantial welfare losses on the intended beneficiaries. This paper addresses the following two questions: what are the causes of such perverse consequences, and when we can effectively implement affirmative action policies without unsatisfactory outcomes. Using the minority reserve policy in the student optimal stable mechanism as an example, I show that two acyclicity conditions, type-specific acyclicity and strongly type-specific acyclicity, are crucial for effective affirmative action policies. I also illustrate how restrictive these two acyclicity conditions are, and the intrinsic difficulty of embedding diversity goals into stable mechanisms. Under some regularity conditions, I demonstrate that the minority reserve policy is approximately effective in the sense that the market is type-specific acyclic with a high probability when the number of schools is sufficiently large.

JEL Classification: C78; D61; I20

Keywords: school choice, affirmative action, deferred acceptance, type-specific acyclicity, strongly type-specific acyclicity, large market.

* Department of Economics, Copenhagen Business School, Porcelænshaven 16A, DK-2000 Frederiksberg. Email: yliueco@gmail.com. I am deeply indebted to my supervisor Peter Bogetof for his continuous support and guidance. I thank Anette Bous, Jens Leth Hougaard, Peter Bro Miltersen, Olivier Terrioux for very helpful comments, as well as audiences at the New Trends in Mechanism Design Workshop 2013 (Aarhus), DGPE Workshop 2013 (Ebbberup), AMES 2014 (Taipei), CMES 2014 (Xiamen), EMES 2014 (Toulouse), 8th International Symposium on Algorithmic Game Theory (SAGT 2015). Financial support from the Center for research in the Foundations of Electronic Markets (CFEM), supported by the Danish Council for Strategic Research, is gratefully acknowledged. All errors are mine.
1.1 Introduction

This paper studies the impact of affirmative action policies in the context of school choice.\footnote{Traditionally, children were assigned to a public school in their immediate neighborhood. However, as wealthy families move to the neighborhoods close to schools with better qualities, such neighborhood-based school assignment may eventually led to socioeconomically segregations. Parents without such means have to send their children to their assigned neighborhood schools, regardless of the quality or other appropriateness of those schools. As a result of these concerns, school choice policies are implemented to grant parents the opportunity to choose the school their child will attend. Abdulkadiro˘glu and S¨onmez (2003) seminally reconstruct the school choice problem from a mechanism design perspective. They illustrate that some mechanisms used in practice had shortcomings, and propose two celebrated algorithms: the \textit{student optimal stable mechanism} based on the deferred acceptance algorithm (Gale and Shapley, 1962), and the \textit{top trading cycles mechanism} based on (Shapley and Scarf, 1974). See Roth and Sotomayor (1990), Roth (2008) and S¨onmez and ¨Unver (2011) for more dedicated reviews of this problem.} Albeit controversial, the purpose of affirmative action in school choice is to create a more equal and diverse environment, i.e., granting students from disadvantaged social groups preferential treatments in school admission decisions to maintain racial, ethnic or socioeconomic balance.

One popular design in practice is the quota-based affirmative action (\textit{majority quota}, henceforth) (Abdulkadiro˘glu, 2005), which sets a maximum number less than the school’s capacity to majority students and leaves the difference to minority students (i.e., the policy-targeted student type).\footnote{For simplicity, we call the policy-targeted student type as \textit{minority} student, and all the other student types as \textit{majority} student. However, the distinction between the majority type and the minority type does not depend on race or other single social-economic status; meanwhile, the number of minority students is not necessarily less than majority students.} However, Kojima (2012) reports that majority quota may actually hurt every minority student. Evidence from the real world also raises suspicion towards the legitimacy of majority quota.\footnote{For example, a parent in Louisville (KY) sued the school district after her kid was rejected by a school because of racial classification. “There was room at the school. There were plenty of empty seats. This was a racial quota” (\url{http://goo.gl/VA8PkK}). A more recent sue case is about the admissions policies of University of Texas, where an applicant claims that many minority students who were admitted had lower grades and test scores than she did (\url{http://goo.gl/7A5DVk}).} Recently, Hafalir et al. (2013) propose an alternative policy design, the reserve-based affirmative action (\textit{minority reserve}, henceforth), which gives minority students preferential treatment up to the reserves. Hafalir et al. (2013) indicate that in term of students’ welfare, minority reserve is a better candidate over its quota-based counterpart.

Although Kojima (2012) and Hafalir et al. (2013) have adequately compared the welfare effects among different affirmative action designs, it remains unclear what the exact
causes of such perverse consequence are. Moreover, I am also curious about whether and when we can effectively implement affirmative action policies without unsatisfactory outcomes. This paper addresses these two concerns through a detailed scrutiny of the minority reserve policy in the student optimal stable mechanism (SOSM) (Abdulkadiroğlu and Sönmez, 2003). The popularity of SOSM emerges from two aspects: (i) in theory, it produces the most desirable matching outcome among all stable mechanisms for students, and is strategy-proof for students (Roth, 1984); (ii) it is also relatively easier to be understood by policy makers and market participants (i.e., students and schools).

1.1.1 Main Results

The minimal requirement of an effective affirmative action is that a (stronger) affirmative action should not make some minorities match with their less preferred schools, while leaving other minorities indifferent compared to their previous matching without the (stronger) affirmative action. I first show that a variant of the acyclicity structure (Ergin, 2002), type-specific acyclicity, is necessary and sufficient to guarantee this minimal effectiveness criterion in a stable mechanism (Theorem 1.1). I then introduce a more demanding effectiveness criterion which requires that implementing a (stronger) affirmative action does not harm any minority students. I show that a stable mechanism makes no minority students strictly worse off if and only if there is no quasi type-specific cycle in the priority orders of schools over students (Theorem 1.2). Theorem 1.1 and Theorem 1.2 clearly reveal the source of perverse affirmative actions in school choice. In addition, these two results also indicate that the adverse effects—as illustrated by the examples in

4 A matching mechanism is stable if there are no individual players (i.e., students or schools) will prefer to be unmatched, or a pair of players who prefer to be matched with each other to their current assignments.
5 A matching mechanism is strategy-proof if no students have incentive to deviate from reporting their true preference orders.
6 Kojima (2012) employs this weak welfare condition to analyze the majority quota policy, and names it as respect the spirit of quota-based affirmative action.
7 Ergin (2002) says that a priority structure (which comprises a pair of schools’ priorities and their corresponding capacities) is acyclic, if it never gives rise to situations where a player can block a potential settlement between any other two players without affecting her own position. See the formal definition as well as discussions of its relation with my two type-specific acyclicity conditions in Section 1.3.1.
8 Balinski and Sönmez (1999) say that a matching mechanism respects improvements if a student is never strictly worse off when her priority ranking is improved in some schools while the relative rankings among other students are unchanged. I extend Balinski and Sönmez (1999)’s notion to incorporate the analysis of students with different types. See the formal definition in Section 1.2.2.
Kojima (2012) and simulations in Hafalir et al. (2013)—are not coincidences, but rather a fundamental property concealed in the priority structures.

Theorem 1.3 addresses my second question, when we can effectively implement affirmative action policies without unsatisfactory outcomes. I show that priority structures in practice are very unlikely to be neither type-specific acyclic nor strongly type-specific acyclic. This finding suggests that even if helping disadvantaged social groups is deemed desirable for the society, caution should be exercised when applying affirmative action to rebalance education opportunities among different social groups. I further link a matching problem to a directed graph, where each student represents a vertex and the ranking of two adjacent students in each school’s priority as an edge. I argue that the presence of various cycle conditions in most extant mechanisms essentially describe the paths (i.e., a sequence of edges) and cycles (if a path has the same initial and terminal vertex) inherited in schools’ diverse priority orders. With the almost inevitable presence of paths in most real-life priority structures, the room left for effective affirmative actions through a simple amendment of extant mechanisms may be limited.

Given the limitation of the point-wise effectiveness in finite matching markets, I further illustrate that the minority reserve policy is approximately effective in the sense that the probability of a random market containing type-specific cycles converges to zero when the copies of schools grow to infinite (Theorem 1.4). Thus, instead of discriminating majority students through affirmative actions (i.e., exchanging the welfare gain of some minority students from impairing other students), an alternative policy practice to rebalance education opportunities is to increase the supply of high-quality schools.

Last, although this paper exclusively focuses on the implementation of minority reserve policy in SOSM, my type-specific notions can serve as a benchmark to analyze the performance of affirmative actions in other matching mechanisms. In addition, because my goal is to reveal the source of perverse affirmative action policies, two student types are sufficient to depict the effect of inter-type rejection chains. Results in this paper can be seamlessly developed into affirmative action policies with more than two types of students.
1.1.2 Related Literature

Incorporating diversity concerns into school choice mechanisms have drawn some attention in recent years. Besides the literature mentioned previously, Ehlers et al. (2014) propose an alternative mechanism to accommodate affirmative action with both maximum and minimum quotas and cases when quotas are either hard or soft. Erdil and Kumano (2012) study a class of allocation rules that allow schools to have indifferent priorities over the same type of students. Echenique and Yenmez (2012) axiomatize a class of substitutable priority rules that allow schools to express preferences for diversity. However, none of these works have clearly answered the two questions I addressed in this paper. In addition, Braun et al. (2014) and Klijn et al. (2016) contrast the performance of minority reserve policy and majority quota in laboratories. Other papers study real-world implementations of affirmative action include the German university admissions system (Westkamp, 2013), and the study of Brazilian public federal universities (Aygün and Bo, 2013), among others.

The literature on market design in large markets has been growing rapidly in the past decade. The two papers that are mostly close to my setting is Kojima and Pathak (2009) and Kojima et al. (2013). Kojima and Pathak (2009) define a rejection chain algorithm which begins from a school’s strategic rejection of a student to initiate a chain of subsequent rejection and acceptance, and finally receive a more desirable student to apply the manipulator. They show that as the size of the market becomes large, such chain effect (initiated by a school’s strategic rejection of a student) is unlikely to return a more desirable student to that school. Therefore, schools expect to match with the same set of students with a high probability. Kojima et al. (2013) further extend the model to analyze the National Resident Matching Program with two types of doctors, single and couple. Another distinct literature strand considers large matching markets with randomization, which enables the analysis of ordinal preferences by assuming a continuum economy as the limit case. See, for example, Che and Kojima (2010) and Che and Tercieux (2015), among others.

Doğan (2016) independently studies a similar problem as this paper and reaches some similar conclusions. In particular, he gives an analogous cycle structure to elaborate the ineffective implementation of minority reserve policy in SOSM, which corresponds to my type-specific cycle notion. However, there are several major differences. First,
the constructions of cycle structures are quite different. While Dogan characterizes a cycle through a chain of direct rejections of students from their original matched schools, my type-specific notion treats the presence of a cycle as the results of inter-type rejection chains after an auxiliary split procedure of schools’ capacities based on their reserve seats. Second, in addition to respecting the spirit of a stronger minority reserve policy, I also introduce another welfare criterion, respecting the improvement of a stronger minority reserve, which requires that the improvement of some minorities’ welfare should not be based on the welfare loss of some other minorities. Although Dogan’s amendment of SOSM with minority reserve respects the spirit of a stronger minority reserve, it is not compatible with my second welfare criterion. Last, Dogan’s mechanism also arises the strategic concern from students side, which largely obscures the true effectiveness of an affirmative action policy. My discussions of approximate effectiveness in large markets (Section 1.4) may offer an alternative theoretical remedy to such strategic concern, which I believe also has stand-alone value.

The rest of the paper proceeds as follows. Section 1.2 sets up the model and introduces the SOSM with minority reserve. Section 1.3 presents the two acyclicity conditions and their relations with possible welfare loss. Section 1.4 further discusses the approximate effective affirmative action in large market. Section 1.5 concludes the paper. All proofs are clustered in Appendix 1.6 and 1.7.

1.2 Model

1.2.1 Preliminary Definitions

Let there be a set of students S, $|S| \geq 3$, and a set of schools C, $|C| \geq 2$. There are two types of students, majority and minority. S are partitioned into two sets depend on their types. Denote S^M as the set of majority students, and S^m as the set of minority students, $S = S^M \cup S^m$ and $S^M \cap S^m = \emptyset$. Each student $s \in S$ has a strict preference order P_s over the set of schools and being unmatched (denoted by s), that is complete, transitive, and

9 i.e., students can benefit from misreporting their preferences. Since Dogan’s mechanism is based on the idea of Kesten (2010), in order to mitigate the welfare losses for minorities, it bears the cost of losing strategy-proofness for students in complete information environments as is the case in Kesten (2010).

10 Throughout, $|\cdot|$ denotes the cardinality of a set.
antisymmetric. All students prefer to be matched with some school instead of themselves,\(c_P s, \) for all \(s \in S \). Each school \(c \in C \) has a total capacity of \(q_c \) seats, \(q_c \geq 1 \), and a strict priority order \(\succ_c \) over the set of students which is complete, transitive, and antisymmetric. Student \(s \) is unacceptable by a school if \(e \succ_c s \), where \(e \) represents an empty seat in school \(c \).

Denote the upper contour set of \(\succ_c \) at student \(s \) as \(U_s(c) = \{ s' \in S | s' \succ_c s \} \).

A market is a tuple \(\Gamma = (S, C, P, \succ, q) \), where \(P = (P_c)_{c \in C} \), \(\succ = (\succ_c)_{c \in C} \) and \(q = (q_c)_{c \in C} \). Denote \(P_e = (P'_c)_{c \in C} \) and \(\succ_e = (\succ'_c)_{c \in C} \). For a given \(\Gamma \), assume that all components, except the vector of students’ preference orders \(P \), is commonly known. We call the priority order and capacity pair \((\succ, q)\) as a priority structure.

A matching \(\mu \) is a mapping from \(S \cup C \) to the subsets of \(S \cup C \) such that, for all \(s \in S \) and \(c \in C \):

1. \(\mu(s) \in C \cup \{s\} \);
2. \(\mu(c) \subseteq S \) and \(|\mu(c)| \leq q_c \);
3. \(\mu(s) = c \) if and only if \(s \in \mu(c) \).

That is, a matching specifies the school where each student is assigned or matched with herself, and the set of students assigned to each school. Given two matchings \(\mu \) and \(\mu' \), \(\mu \) Pareto dominates \(\mu' \) if (i) \(\mu(s)P\mu'(s) \) for at least one \(s \in S \), and (ii) \(\mu(s)R_c \mu'(s) \) for all \(s \in S \), where \(R_c \) represents two matched schools are equally good for \(s \). A matching \(\mu \) is Pareto efficient if it is not Pareto dominated by any another matchings.

A matching \(\mu \) is individually rational if for each student \(s \in S \), \(\mu(s)P_s \), and for each \(c \in C \), (i) \(|\mu(c)| \leq q_c \) and (ii) \(s \succ_c c \) for every \(s \in \mu(c) \). A matching \(\mu \) is blocked by a pair of student \(s \) and school \(c \) if \(s \) strictly prefers \(c \) to \(\mu(s) \) and either (i) \(s \) strictly prefers \(s' \) to \(c \), or (ii) \(|\mu(c)| = q_c \) and \(s \) is acceptable to \(c \). A matching is stable if it is individually rational and unblocked by a pair of \((s, c)\).

A mechanism \(f \) is a function that produces a matching \(f(\Gamma) \) for each market \(\Gamma \).
say a mechanism is efficient if there is no matching that Pareto dominates \(f(\Gamma) \) for any \(\Gamma \).

Similarly, a stable mechanism is a mechanism that yields a stable matching with respect to reported preferences for every market.

1.2.2 Reserve-based Affirmative Action

A market \(\Gamma \) implements a minority reserve policy when some schools are required to reserve some of their seats to minority students. In particular, if the number of tentatively accepted minorities is less than a school’s reserved seats, then all minority students are more preferred to all majority students in that school, while the ranking of each student remains unchanged within her own type.\(^{15}\)

Since the set of students is fixed, I rewrite the market as \(\Gamma = (C, P, \succ, q, r^m) \), where \(r^m \) is the corresponding vector of minority reserves for each school \(c \). Market \(\tilde{\Gamma} = (C, P, \succ, (q, \tilde{r}^m)) \) is said to have a stronger minority reserve than \(\Gamma \), if the total capacity \(q \) of each school keeps unchanged, but \(\tilde{r}^m_c \geq r^m_c \) for every \(c \in C \), and \(\tilde{r}^m_c > r^m_c \) for some \(c \in C \).

Affirmative action policies intend to improve the matches of minority students, sometimes at the expense of majority students. I thus need some additional type-specific criteria to evaluate the welfare impact of implementing different affirmative action policies. Given two matchings \(\mu \) and \(\mu’ \), \(\mu \) Pareto dominates \(\mu’ \) for minorities if (i) \(\mu(s) R s \mu'(s) \) for all \(s \in S^m \), and (ii) \(\mu(s) P s \mu'(s) \) for at least one \(s \in S^m \).

Individual rationality is not affected by the presence of minority reserve. A matching \(\mu \) is blocked by a pair of student \(s \) and school \(c \) with minority reserve, if \(s \) strictly prefers \(c \) to \(\mu(s) \) and either \(|\mu(c)| < q \), or \(s \) is acceptable to \(c \), or

1. if \(s \in S^m \), \(c \) strictly prefers \(s \) to some \(s’ \in \mu(c) \);
2. if \(s \in S^M \) and \(|\mu(c) \cap S^m| > r^m \), \(c \) strictly prefers \(s \) to some \(s’ \in \mu(c) \);
3. if \(s \in S^M \) and \(|\mu(c) \cap S^m| \leq r^m \), \(c \) strictly prefers \(s \) to some \(s’ \in \mu(c) \cap S^M \).

Condition (1) describes a situation where a pair of school of student \((c, s) \) forms a blocking pair because \(s \) is a minority student and \(c \) prefers \(s \) to some tentatively matched

\(^{15}\) One distinctive feature of minority reserve is that it is not as rigid as the majority quota. If there are not enough minority students to fill the reserves, majority students are still acceptable up to this school’s capacity.
students in \(c \). In condition (2), whereas blocking happens because \(s \) is a majority student, the number of minority students in \(c \) exceeds minority reserves and \(c \) prefers \(s \) to some students in \(c \). Finally, in condition (3), \((c, s)\) has a blocking pair because \(s \) is a majority student, the number of minority students in \(c \) does not exceed minority reserves, but \(c \) prefers \(s \) to some majority students in \(c \). A matching is stable if it is individually rational and unblocked by a pair of \((s, c)\) with minority reserve.

Hafalir et al. (2013) compose the following mechanism to accommodate the SOSM with minority reserve (SOSM-R henceforth):

- **Step 1:** Start from the matching where no student is matched. Each student \(i \) applies to her first-choice school. Each school \(c \) first accepts up to \(r_m^c \) minorities with the highest priorities if there are enough minority students on the waiting list. Then it accepts students from the remaining applications with the highest priorities until its capacity is filled or the applicants are exhausted. The rest (if any) are rejected.

- **Step \(n \):** Each student \(i \) who was rejected in Step \((n - 1)\) applies to her next highest choice (if any). Each school \(c \) considers these students and students who are tentatively held from the previous step together. \(c \) first accepts up to \(r_m^c \) minorities with the highest priorities if there are enough minority students on the waiting list. Then it accepts students from the remaining applications with the highest priorities until its capacity is filled or the applicants are exhausted. The rest (if any) are rejected.

The algorithm terminates either when every student is matched to a school or every unmatched student has been rejected by every acceptable school. The algorithm always terminates in a finite number of steps. Denote the new mechanism, SOSM-R, by \(f^R \), and its outcome under market \(\Gamma \) by \(f^R(\Gamma) \).

Example 1.1: Consider the following market \(\Gamma = (C, P, \succ, (q, r_m)) \). Let \(C = \{c_1, c_2\} \) and \(S = \{s_1, s_2, s_3\} \), \(S^m = \{s_2, s_3\} \) and \(S^M = \{s_1\} \). The priority orders and (type-specific)

\[
\begin{align*}
\text{Example 1.1: Consider the following market } \Gamma = (C, P, \succ, (q, r_m)). \text{ Let } C = \{c_1, c_2\} \text{ and } S = \{s_1, s_2, s_3\}, \text{ } S^m = \{s_2, s_3\} \text{ and } S^M = \{s_1\}. \text{ The priority orders and (type-specific)}
\end{align*}
\]
capacities of schools are
\[\succ_{c_l} : s_1, s_2, s_3 \quad (q_{c_l}, r_{c_l}) = (1, 0) \quad l = 1, 2 \]

Students preference orders are
\[P_{s_i} : c_1, c_2 \quad i = 1, 3 \]
\[P_{s_2} : c_2, c_1 \]

The matching produced by SOSM (or equivalently, SOSM-R without affirmative action) is
\[f_{GS}(\Gamma) = \begin{pmatrix} c_1 & c_2 \\ s_1 & s_2 \end{pmatrix} \]
which leaves \(s_3 \) unmatched. If implement a (stronger) minority reserve policy \(\tilde{q}_{c_l} = (q_{c_l}, \tilde{r}_{c_l}) = (1, 1) \), while \(c_2 \) is unaffected, SOSM-R produces
\[f_{R}(\tilde{\Gamma}) = \begin{pmatrix} c_1 & c_2 \\ s_2 & s_1 \end{pmatrix} \]

Obviously, the stronger affirmative action with \(\tilde{r}_{c_1} = 1 \) causes both the minority student \(s_2 \) and the majority student \(s_1 \) strictly worse off compared to the previous outcome without affirmative action, while the other minority student \(s_3 \) is indifferent before and after implementing \(\tilde{r}_{c_1} \). The matching outcome \(f_{R}(\tilde{\Gamma}) \) is Pareto dominated by \(f_{GS}(\Gamma) \) for minorities.

Since the purpose of affirmative action policy is to improve students’ welfare from the policy-targeted type (i.e., minority student in this paper), the Pareto dominated outcome as is the case in Example 1.1 should be avoided. I introduce the following two welfare criteria to evaluate the effectiveness of a stronger minority reserve policy.

Definition 1.1: A mechanism \(f \) respects the spirit of a stronger minority reserve \(\tilde{r}^m \), if for any given pair of markets \(\Gamma \) and \(\tilde{\Gamma} \) such that \(\tilde{\Gamma} \) has a stronger minority reserve than \(\Gamma \), no matching \(f(\tilde{\Gamma}) \) is Pareto dominated by \(f(\Gamma) \) for minorities.
Definition 1.1 implies that implementing a stronger minority reserve policy should never make some minority students strictly worse off, while leaving the rest of the minority students indifferent. This idea is introduced by Kojima (2012) to study the performance of majority quota policy, which serves as the minimum welfare requirement in this paper.

Definition 1.2: A mechanism f respects the improvement of a stronger minority reserve \tilde{r}_m, if for any given pair of markets Γ and $\tilde{\Gamma}$ such that $\tilde{\Gamma}$ has a stronger minority reserve than Γ, no minority student is strictly worse off in $f(\tilde{\Gamma})$ than in $f(\Gamma)$.

Definition 1.2 requires that the possible welfare improvement of some minority students should not be based on the welfare loss of any other minorities. It provides a stronger welfare criterion compare to the preceding one, which also generalizes the respect of improvements condition (Balinski and Sönmez, 1999) to matching markets with different student types.

Remark 1.1: If a mechanism respects improvements, then it also respects the improvement of a stronger minority reserve. In addition, if a mechanism respects the improvement of a stronger minority reserve, then it also respects the spirit of a stronger minority reserve.

The next step is to introduce the following modified market which produces the same matching as the original market with SOSM-R. In a market $(C, P, \succ, (q, r_m))$, split each school c with capacity q_c and minority reserve r_m into two corresponding sub-schools, original sub-school (c_o) and reserve sub-school (c_r). Let C^m be the set of schools with both c^o and c^r. c^o has a capacity of $q_c - r_m$ and maintains the original priority order \succ_c. c^r has a capacity of r_m and its new priority \succ^{c_r} is

$$
\succ^{c_r}_c \equiv \begin{cases}
 s \succ_c s' & \text{if } s, s' \in S^m \\
 s \succ_c s' & \text{if } s, s' \in S^M \\
 s \succ^{c_r}_c s' & \text{if } s \in S^m, s' \in S^M
\end{cases}
$$

c^r keeps the same pointwise priority orders as school c in the original market for all majority students and all minority students respectively, but prefers all minorities to any

17 If a school c is not affected by minority reserve, then c^o is equivalent to c after the split procedure.
majorsities. For each student, if $c_1 P_s c_2$ in the original market, her preference in the new market is

$$c'_1 P'_s c'_2 P'_s c'_2 P'_s c'_2 \quad \forall s \in S^m$$

$$c'_1 P'_s c'_2 P'_s c'_2 P'_s c'_2 \quad \forall s \in S^M$$

That is, (i) I preserve the same preference orders over schools in the new market, and assume that (ii.a) each minority student prefers the reserve sub-schools (c') over the original sub-schools (c); whereas (ii.b) each majority prefers c over c'.

Denote the new market as $\Gamma^m = (C^m, P', (\succ^o, \succ^r), (q, r^m))$, where $\succ^x = (\succ^x)_{c \in C}$, $x = o, r$, and its matching outcome through SOSM is $f^{GS}(\Gamma^m)$. Let $((\succ^o, \succ^r), (q, r^m))$ be the corresponding priority structure of (\succ, q) in Γ^m.

Claim 1.1: For each market $\Gamma = (C, P, (\succ), (q, r^m))$ and its corresponding $\Gamma^m = (C^m, P', (\succ^o, \succ^r), (q, r^m))$, $f^R(\Gamma) = f^{GS}(\Gamma^m)$.

Hafalir et al. (2013) give a similar split procedure and indicate that SOSM generates the same matching outcome in Γ^m as the SOSM-R in Γ. The only difference is that Hafalir et al. (2013) let all students first apply to the reserve sub-school c', whereas I assume majority students prefer the original sub-school c to the reserve sub-school c' in each school c. As I maintain the relative rankings of each original school in Γ^m while all students are only tentatively accepted in each corresponding sub-schools after the split procedures, a different application order (between c and c') within each c will not change the final outcome.

1.3 Two Acyclicity Conditions

Although Hafalir et al. (2013) imply a clear welfare improvement of SOSM-R for minority students over embedding majority quota with SOSM, SOSM-R may still produce ineffective outcomes such as the case of Example 1.1. My first task is to understand the cause of such adverse effects on minority students.
Definition 1.3: Given a priority structure $(\succ, (q, r^m))$ and its corresponding $((\succ_0, \succ^*)$, $(q, r^m))$, a *type-specific cycle* is constituted of $k+1$ distinct schools c_0, c_1, \ldots, c_k, and $k+2$ distinct students s_i, s_j, s_k, s_l where $s_i, s_j \in S^m$, $s_j \in S^M$ and $s_i = \{s_{1}, s_{2}, \ldots, s_{k-1}\} \in S, k \geq 1$, if the following two conditions are satisfied:

(C) Cycle condition: $s_k \succ_{c_0} s_i \succ_{c_0} s_j \succ_{c_0} s_k \succ_{c_0} s_2 \ldots s_{k-1} \succ_{c_0} s_k$, such that $x = 0$ if $s_i \in S^m$, and $x = r$ if $s_i \in S^M, l = \{1, \ldots, k-1\}$.

(S) Scarcity condition: There exist $k+1$ disjoint sets of students $S_{o_1}, S_{c_1}, \ldots, S_{c_k} \subseteq S \setminus \{s_j, s_k, s_1, s_2, \ldots, s_{k-1}\}$, such that $|S_{o_1}| = q_{o_1} - 1$, $|S_{c_1}| = q_{c_1} - 1$, $S_{o_1} \subseteq U^m_o(s_i)$ $U^m_o(s_0), S_{c_1} \subseteq s_0 U^m_o(s_0)$, $I = \{1, \ldots, k-1\}$. $U^m_o(s_i) = \{s' \in S| s' \succ_{c_0} s_i\}, x = 0, r$.

$((\succ_0, \succ^*),(q, r^m))$ is *type-specific acyclic* if it has no type-specific cycles.

Condition (C) indicates a chain of rejections and acceptances with a group of distinct schools and students which is initiated by a majority student (s_i) and is terminated by a minority student (s_k) whom applies to the initial school rejected the majority student. Condition (S) excludes the situation that students are exhausted before filling up all seats.18

Lemma 1.1: For a market $\Gamma = (C, P, \succ, (q, r^m))$ and its corresponding $\Gamma^m = (C^m, P^o, (\succ_0^m, \succ^*_m), (q, r^m))$, let μ and $\tilde{\mu}$ be the matching outcomes of SOSM-R before and after a stronger affirmative action policy r^m. If $\tilde{\mu}(s)$ is Pareto dominated by $\mu(s)$ for all $s \in S^m$, then $\tilde{\mu}(s)$ is Pareto dominated by $\mu(s)$ for all $s \in S$.

Proof. See Appendix 1.6.1.

Lemma 1.1 tells us that in cases when no minorities benefit from a (stronger) affirmative action $\tilde{\mu}$, then all majorities also prefer the previous matching outcome without $\tilde{\mu}$. With Lemma 1.1, I am now ready to show my first main result.

Theorem 1.1: Given a priority structure $(\succ, (q, r^m))$ and its corresponding $((\succ_0, \succ^*), (q, r^m))$, a stable matching mechanism respects the spirit of a stronger minority reserve \tilde{r}^m, if and only if $((\succ_0, \succ^*), (q, r^m))$ is type-specific acyclic.

18 If there is a school left with empty seats, the chain of rejections will be terminated (without rejecting another student) once some students rejected by other schools apply to this school.
Theorem 1.1 clearly reveals that ineffective affirmative action policies are due to the presence of type-specific cycles. I use Example 1.1 to outline the proof. For the “only if” part, since both of the two schools only have one available seat while they both prefer the majority student \(s_1 \) to the other two minority students \(s_2 \) and \(s_3 \) before the (stronger) minority reserve policy \(\tilde{r}_{m_1} = 1 \), the outcome that assigns \(s_1 \) to \(c_1 \) and \(s_2 \) to \(c_2 \) is Pareto efficient. If implementing \(\tilde{r}_{m_1} = 1 \), I have \(c_1 \equiv c'_1 \) and the two minorities become more preferred to \(s_1 \), i.e., \(s_2 \succ_{c_1} s_1 \succ_{c_1} s_3 \). The rejection of \(s_1 \) from \(c'_1 \) initiates a chain reaction which causes \(s_2 \) to be rejected by \(c_0 \) and \(s_3 \)’s rejection from \(c'_1 \). We can easily see the presence of a type-specific cycle with two schools and three students, \(s_2 \succ_{c_1} s_3 \succ_{c_1} s_1 \succ_{c_2} s_2 \), while Condition (S) is trivially satisfied because \(q_{c_1} = q_{c_2} = 1 \). The proof of the “if” part essentially generalizes the case of Example 1.1 by assuming that if a stable mechanism (e.g., SOSM-R) does not respect the spirit of minority reserve, we can always construct at least one type-specific cycle for a given priority structure.

Since some of the minorities may still be strictly worse off even if a priority structure contains no type-specific cycles, I am curious about when a matching mechanism can ensure that no minority is harmed by a stronger affirmative action.

Definition 1.4: Given a priority structure \((\succ, (q, r^m))\) and its corresponding \(((\succ^o, \succ^r), (q, r^m))\), a quasi type-specific cycle is constituted of two distinct schools \(c, c' \) and three distinct students \(s_i, s_j, s_k \) where \(s_i \in S, s_k \in S^m, \) and \(s_j \in S^M, \) if the following two conditions are satisfied

\[\text{(C') Cycle condition:} \quad s_i \succ_{c} s_j \succ_{c'} s_k. \]

\[\text{(S') Scarcity condition:} \quad \text{There exist two disjoint sets of students} \ S_c, S_c' \backslash \{s_i, s_j, s_k\} \text{ such that} |S_c| = q_c - 1, |S_c'| = q_c' - 1, S_c \subseteq U^c(s_i) \cup U^r(s_i), S_c' \subseteq U^c(s_k) \cup U^r(s_k). \]

\[U^x(s) = \{s' \in S | s' \succ^x_s s\}, \ x = o, r. \]

\[((\succ^o, \succ^r), (q, r^m)) \text{ is strongly type-specific acyclic if it has no quasi type-specific cycles.} \]

The construction of a quasi type-specific cycle is analogous to the type-specific cycle. However, compare to its counterpart in Definition 1.3, Condition (C') permits the presence
of a much weaker cycle for a given priority structure. This makes the strongly type-specific acyclicity even more difficult to satisfy.

Remark 1.2: If \((\succ, (q, r^m))\) has a type-specific cycle, then it has a quasi type-specific cycle.

Lemma 1.2: For a market \(\Gamma = (C, P, \succ, (q, r^m))\) and its corresponding \(\Gamma^m = (C^m, P', (\succ^o, \succ^r), (q, r^m))\), let \(\mu\) and \(\tilde{\mu}\) be the matching outcomes of SOSM-R before and after a stronger affirmative action policy \(r^m\). If there is at least one \(s \in S^m\) who is strictly worse off in \(\tilde{\mu}\) than in \(\mu\), then there must have at least one majority student who is strictly worse off in \(\tilde{\mu}\) than in \(\mu\).

Proof. See Appendix 1.6.3. \(\square\)

Compared with Lemma 1.1, Lemma 1.2 allows situations where some minorities may benefit from a stronger affirmative action policy.

Theorem 1.2: Given a priority structure \((\succ, (q, r^m))\) and its corresponding \(((\succ^o, \succ^r), (q, r^m))\), a stable matching mechanism respects the improvement of a stronger minority reserve \(r^m\), if and only if \(((\succ^o, \succ^r), (q, r^m))\) is strongly type-specific acyclic.

Proof. See Appendix 1.6.4. \(\square\)

Because for a given priority structure, strongly type-specific acyclicity is more confined than the type-specific acyclicity condition, Theorem 1.2 verifies my intuition that it is even more difficult to make no minority students worse off after a (stronger) affirmative action. Theorem 1.1 and Theorem 1.2 clearly demonstrate that the perverse consequence of affirmative actions on the purported beneficiaries does not happen occasionally, instead it is a fundamental phenomenon concealed in schools’ priority orders.

The following result gives a quite negative response to my second question—when we can effectively implement affirmative action policies without unsatisfactory outcomes.

Theorem 1.3: Given a priority structure \((\succ, (q, r^m))\) and its corresponding \(((\succ^o, \succ^r), (q, r^m))\), suppose that \(|S^m| \geq 2\), \(|S^M| \geq 1\), and for any two schools \(c, c' \in C\), \(q_c + q_{c'} \leq |S^m|\). Let \(s_j\) be a majority student.
(i) $((\succ, \succ'), (q, r^m))$ is type-specific acyclic, only if there is no more than one minority student has lower priority than s_j in two different schools.

(ii) $((\succ, \succ'), (q, r^m))$ is strongly type-specific acyclic, only if no minority students has lower priority than s_j in all schools.

Proof. See Appendix 1.6.5. □

In practice, it is almost impossible to find markets where almost all schools rank almost all minorities higher than each majority, let alone where each minority is ranked higher than each majority in all schools. Theorem 1.3 shows how restrictive the two type-specific acyclicity conditions are, and the difficulty to effectively incorporate diversity goals into school choice problems.

1.3.1 Relations with Other Acyclic Conditions

Ergin (2002) characterizes the efficient SOSM (with no diversity concerns) by the following condition.

Definition 1.5: (Ergin, 2002) Given a priority structure (\succ, q), a Ergin-cycle is constituted of two distinct schools $c, c' \in C$ and three distinct students $s_i, s_j, s_k \in S$, if the following two conditions are satisfied

(i) $s_k \succ_c s_i \succ_c s_j \succ_c s_k$.

(ii) There exist two disjoint sets of students $S_i, S_i' \setminus \{s_i, s_j, s_k\}$, such that $|S_i| = q_c - 1$, $|S_i'| = q_c' - 1$, $S_i \subset U_c(s_i)$, $S_i' \subset U_c(s_k)$. $U_c(s) = \{s' \in S | s' \succ_c s\}$.

(\succ, q) is Ergin-acyclic if it has no Ergin-cycles.

My type-specific acyclicity generalizes Ergin’s characterization into markets with different student types. Because I only require no cycles across types but do not restrict cycles with students from the same type, priority structures that are type-specific acyclic may still contain Ergin-cycles.

Remark 1.3: If $((\succ, \succ'), (q, r^m))$ has a type-specific cycle, then it has a Ergin-cycle.
Various acyclicity conditions have been developed in other popular matching mechanisms since Ergin’s seminal work.20 If considering a priority structure as a directed graph (where each student represents a \textit{vertex} and the ranking of two adjacent students in each school’s priority as an \textit{edge}), we can see that different cycle conditions essentially depict the paths (i.e., a sequence of edges) and cycles (if a path has the same initial and terminal vertex) inherited in schools’ diverse priority orders. Therefore, an unsophisticated implementation of affirmative actions will result in arbitrary changes of some schools’ priority orders which may disentangle some existent paths,21 but it may also create new paths with subsequent welfare losses to all students involved in the paths. With the almost

19 The reason is obvious, since my purpose is to investigate whether affirmative action policies will cause welfare loss on the type of minority students. If a cycle only involves students from the same type, implementing a (stronger) affirmative action will not change the matching outcome.

20 Kesten (2006) shows that the deferred acceptance mechanism and the top trading cycle mechanism are equivalent if and only if the priority is \textit{Kesten-acyclic}. Harringer and Klijn (2009) further indicate that Ergin-acyclicity is a necessary and sufficient condition for Nash implementation of the stable correspondence. Kumano (2013) shows that Boston mechanism is stable and strategy-proof at the same time if and only if the priority is \textit{Kumano-acyclic}.

21 For instance, Example 1 of Kojima (2012) illustrates a situation where a stronger majority quota policy benefits all students, including the majority students, in SOSM.
inevitable presence of paths in most real-life priority structures, a simple amendment of extant mechanisms may not be able to achieve desirable diversity goals in school choice.

1.4 Approximately Effective Affirmative Action in Large Market

Comparing approximate performances among different algorithms has a long tradition in computer science, which also draws interests from economists, especially in the field of market design, in recent years. Using SOSM-R as an example, Theorem 1.3 shows a quite disappointing result for effective implementations of affirmative action in finite market setting. I am curious about whether we can achieve a certain level of approximate effectiveness when the number of players are sufficiently large.

Recall Claim 1.1, I know that after splitting each school c with quota q_c and minority reserve r^m_c into two corresponding sub-schools, the original sub-school (c') and the reserve sub-school (c^r), running SOSM in the auxiliary market Γ^m generates the same matching outcome as the SOSM-R in the original market Γ. I first introduce a sequential version of the SOSM-R, denoted by Sequential SOSM-R, which still generates the same outcomes as the SOSM-R in market Γ. However, as minority students and majority students are added separately into the Sequential SOSM-R, this auxiliary procedure helps us clearly disentangle the possible rejection chains initiated from the two types of students.

I provide a brief description of the Sequential SOSM-R here, and defer the formal definition in Appendix 1.7.

- Loop 1: Run the SOSM for a sub-market composed of all schools, minority students and possibly matched majorities from Loop 2 (if any). Each minority retains her relative ranking of all schools as in the original SOSM-R, and first applies to the reserve sub-school (c^r) of her most favorable school c. Each c' school accepts as many as applicants

22 Loosely, the idea is to show that for some desirable properties that are unattainable (or incompatible) in finite market (i.e., with a small amount of schools and students in the context of school choice), it is able to retrieve their approximate counterparts in large markets (where the number of market participants goes to infinity).

23 Note that although (countably) infinite largely serves as a theoretical upper bound for the sake of computing convergent rate (or proving the existence of approximate equilibria), many real world matching markets do have a large number of applicants and institutions. For instance, in the National Resident Matching Program (NRMP), the number of hospital programs is between 3,000 and 4,000 and the number of students is over 20,000 each year. In the New York public school choice program, there are about 500 schools and over 90,000 students per year.
to fill up its empty seats. If there is still some minority applicants on the waiting list, \(c' \) first rejects an equivalent number of majorities matched from Loop 2 (if any), accepts the rest applicants with the highest priorities until its capacity is filled or the applicants are exhausted. All rejected minorities then applies to the corresponding original sub-school \(c'' \) of \(c \). Each \(c'' \) accepts up to \(q_c - r^m_c \) applicants with the highest priorities and rejects the rest. If the minority gets rejected again, she applies to her next highest choice of school \(c \) (if any) accordingly. Keep all rejected majorities from either \(c' \) or \(c'' \) unmatched until Loop 1 terminates and add to the applicants in Loop 2. Loop 1 stops until no rejection occurs and tentative matching at that step is finalized.

- Loop 2: One by one, run the SOSM for a sub-market of all unmatched applicants from Loop 1, all original sub-schools \((c'') \) and only schools still have empty seats (or matched with some majorities) in the set of reserve sub-schools \((c') \) from Loop 1. First place each unmatched majority to \(c'' \) of her most favorable school \(c \). Each \(c'' \) accepts up to \(q_c - r^m_c \) applicants with the highest priorities from either types. All rejected majorities apply to the corresponding reserve sub-school \(c' \) of \(c \). Each \(c' \) school (with empty seats or matched with some majorities from Loop 1) accepts the set of majorities with the highest priorities until its empty seats is filled up, replaces some less preferred majorities matched in Loop 1, and rejects the rest.\(^{24}\) If the majority gets rejected again, she applies to her next highest choice of school \(c \) (if any) accordingly. Keep all rejected minorities from any \(c'' \) unmatched until Loop 2 terminates, and add back to Loop 1. Loop 2 stops until no rejection occurs and tentative matching at that step is finalized.

The Sequential SOSM-R algorithm terminates either when every student is matched to a school or every unmatched student has been rejected by every acceptable school. It terminates in a finite number of steps, and will produce the same matches as the original SOSM-R. Denote its outcome, under market \(\Gamma^m \) by \(f^{SE}(\Gamma^m) \).

Before going further, I first use Example 1.1 to illustrate how the Sequential SOSM-R works with the (stronger) minority reserve \(\tilde{q}_1 = (q_1, \tilde{r}_m) = (1, 1) \). In the Sequential SOSM-R, I first split the two schools \(c_1 \) and \(c_2 \) into their corresponding \((c''_1, c''_2) \) and

\(^{24}\) i.e. a majority student will be accepted in any \(c' \) only if there is an empty seat or she is more preferred than a tentatively matched majority; no minorities are allowed to be rejected from \(c' \) in Loop 2.
(c₂, c₂'). (i) Initiate Loop 1, the minority student s₂ first applies to c₂ while s₃ to c₁, given q₁ = |c₁| = 1 (with |c₂| = 0) and q₂ = |c₂| = 1 (with |c₂'| = 0). s₂ and s₃ are tentatively accepted by c₂' and c₁' respectively. Loop 1 stops. (ii) Initiate Loop 2, the majority students s₁ applies to c₁ directly (as c₀₁ has no capacity given q₁ = |c₁| = 1), and is rejected given s₃ ≻₁ c₁ s₁. Next, s₁ applies to c₀₂. As s₁ ≻₂ c₂, the minority student s₂ previously matched with c₀₂ from Loop 1 get rejected, and is kept unmatched until Loop 2 stops. (iii) Initiate Loop 1 again, s₂ now applies to c₁'. Given s₂ ≻₁ c₁' s₃ while s₂, s₃ ∈ Sm, s₃ gets rejected. s₃ then applies to c₂' and gets rejected again. The Sequential SOSM-R terminates. Clearly, fR(Γ) = fSE(Γm).

In order to analyze the convergence process in large matching markets, I need to consider a sequence of markets of different sizes. I first extend my notation of the market tuple Γ to incorporate the uncertainty when adding additional students and schools into the market. A random market is a tuple Γ = ((Sm, Sm), C, P, ≻, (q, r), k, P), where Sm is the subset of minority students from the set of students Sm, k is a positive integer and P = (p_c) c∈C is a probability distribution on C, with p_c > 0 for each c ∈ C. For simplicity, I assume that minorities and majorities have similar favors for schools, i.e., all students generate their preferences from the same probability distribution of schools.²⁵

Each random market induces a market by randomly generated preferences of each student s as follows (Immorlica and Mahdian, 2005):²⁶

• Step 1: Select a school independently from the distribution P. List this school as the top ranked school of student s.

• Step t ≤ k: Select a school independently from P which has not been drawn from steps 1 to step t − 1. List this school as the tth most preferred school of student s.

Student s only lists these k schools as her preference order. For each realization of student preferences, a market with perfect information is obtained.²⁷ A sequence of

²⁵My main result (Theorem 1.4) will not change even if schools are drawn by students with different patterns. However, the result may give a different convergence rate.
²⁶Terminologies used in this section can also be found in Kojima and Pathak (2009), Kojima et al. (2013). Also, see Knuth et al. (1990) for an earlier intellectual contribution.
²⁷One important assumption is that student preferences are drawn independently from one another, and the way in which each student’s preference order is drawn also follows a particular procedure. Again, for simplicity, I only consider the above procedure with distribution P to generate preferences.
random markets is denoted by \((\hat{\Gamma}_1, \hat{\Gamma}_2, \ldots)\), where \(\hat{\Gamma}_n = ((S_{m,n}, S^n), C^n, (q^n, r_{m,n}), \succ_{C^n}, k^n, P^n)\) is a random market in which \(|C^n|\) is the number of schools, and \(|r_{m,n}|\) is the number of seats reserved for minorities.

Definition 1.6: A sequence of random markets \((\hat{\Gamma}_1, \hat{\Gamma}_2, \ldots)\) is regular, if these exist \(\lambda > 0, a \in [0, \frac{1}{2}), b > 0, r \geq 1,\) and positive integers \(k\) and \(\bar{q}\), such that for all \(n\),

1. \(k_n = k\),
2. \(q_c \leq \bar{q}\) for all \(c \in C^n\),
3. \(|S_{m,n}| \leq \lambda n, |r_{m,n}| \leq bn^a\)
4. \(\frac{p_{c}}{p_{c'}} \in [\frac{1}{r}, r]\) for all \(c, c' \in C^n\),
5. every \(s \in S^n\) is acceptable to \(c\) at any realization of preferences for \(c\) at \(P^n\).

Condition (1) assumes that the length of students’ preferences does not increase with the market size. Condition (2) requires that the capacity of each school is bounded across schools and markets. Condition (3) requires that the number of minority students does not grow much faster than the number of schools. Moreover, the number of seats reserved for minority students grows at a slower rate of \(O(n^a)\) where \(a \in [0, \frac{1}{2})\). Condition (4) requires that the popularity of different schools (as measured by the probability of being selected by students as acceptable) does not vary too much. Condition (5) requires schools to find any student acceptable, but priority orders are otherwise arbitrary.

Given all these preparations, the following result gives my main argument under the large market setting, which states that the SOSM-R is very likely to respect the spirit of a stronger minority reserve when the number of schools is sufficiently large.

Theorem 1.4: Consider a regular sequence of random markets. There exists \(n_0\) such that the SOSM-R approximately respects the spirit of a stronger minority reserve \(\tilde{r}^m\) for any market in that sequence with more than \(n_0\) schools.

In this section, superscripts are used for the types of each single school \(c\) after the splitting process in \(\Gamma^m\), the number of schools present in the sequence of random markets, and the types of students. These notations will be relabeled in Appendix 1.7.

Also, I assume that the number of majority students grows at a same rate as minorities, but such assumption is irrelevant for my main result.
I give the intuition of my proof here and leave its details to Appendix 1.4. First, notice that when there is a large number of schools presenting in the market, after Loop 1, many of them either are not listed by any minorities, or even if some minorities have already applied to these schools but they are not required to implement minority reserves. Next, consider at each instance in Loop 2 when majorities are added to the Sequential SOSM-R, according to Lemma 1.3, it is very unlikely for the current applicants (i.e., majority students) submit to a school which has been applied by any minorities (and implemented with minority reserve at the same time) in Loop 1. Therefore, I show that when the market becomes sufficiently large while the number of seats reserved for minorities are not growing too fast, it is unlikely to have minorities rejected by some majorities in Loop 2. As the type-specific cycle essentially characterizes a chain of rejections and acceptances, when the market is sufficiently large, a rejection chain which returns a current matched minority student to the initial school c_0 and makes each minority student involved in this chain strictly worse off becomes unlikely to happen.30

However, even though a priority structure is unlikely to contain any type-specific cycles when the number of schools is large, as long as some minority students have lower rankings than any majority students in some random schools, I still cannot safely eliminate the possible presence of quasi type-specific cycles.

1.5 Conclusion

This paper proposes two welfare criteria to evaluate the effective implementation of affirmative action policies in school choice problems. I characterize two type-specific acyclicity conditions in the SOSM-R (Hafalir et al., 2013) and demonstrate their respective (material) equivalence with the two welfare criteria in stable matching mechanisms. I further show that type-specific cycles will gradually vanish with the increase of the market size. At the policy level, my results suggest that instead of discriminating majority students through affirmative actions, i.e., exchanging the welfare gain of some minority students from impairing other students, an alternative policy practice to rebalance education opp-

30 Koijma et al. (2013) use similar arguments to show that in large markets, because a strategic rejection of a female doctor will not return another more preferred male applicant to this hospital with a high probability, truth-telling thus becomes an approximate equilibrium from the hospital side under the doctor-proposing deferred acceptance algorithm.
portunities is to increase the supply of high-quality schools.

Last, since in general we can treat the effective implementation of affirmative actions as a market design problem with different types of players and type-specific capacity constraints, I believe a thorough analysis of affirmative action also preserves general theoretical interests that are not limited in school choice problems.

1.6 Appendix for Chapter 1: Proofs of Finite Market Results

Notations: (the following notations are used throughout the proofs)
Let \(\mu \) be the matching by SOSM-R in a random market \(\Gamma = (C, P, \succ, (q, r^m)) \) and \(\hat{\mu} \) be the matching outcome after a stronger affirmative action \(\tilde{r}^m, \tilde{r}^m > r^m \). Denote the market after \(\tilde{r}^m \) by \(\hat{\Gamma} = (C, P, \succ, (q, \tilde{r}^m)) \). \(\Gamma^{m} = (C^{m}, P^{m}, (\succ^{o}, \succ^{r}), (q, r^{m})) \) and \(\hat{\Gamma}^{m} = (C^{m}, P^{m}, (\succ^{o}, \succ^{r}), (q, \tilde{r}^{m})) \) are the two respective markets of \(\Gamma \) and \(\hat{\Gamma} \) after splitting each school into the original sub-school (\(c^{o} \)) and the reserve sub-school (\(c^{r} \)).

1.6.1 Proof of Lemma 1.1

I prove the Lemma by contradiction. Suppose that if \(\tilde{\mu}(s) \) is Pareto dominated by \(\mu(s) \) for all \(s \in S^m \), there has at least one majority student \(s_0 \in S^M \) who prefers \(\tilde{\mu} \) to \(\mu \) in \(\hat{\Gamma}^{m} \), \(\tilde{\mu}(s_0) \succ_{\tilde{r}^m} \mu(s_0) \). Since \(s_0 \) is a majority student, she is rejected by a reserve sub-school. Because \(s_0 \) prefers \(c_1 \) to \(c_0 \), she must have been rejected by \(c_1 \) in \(\Gamma^{m} \) (which leads to the matching \(\mu \)), at an earlier step before \(s_0 \) applies to \(c_0 \). Denote the step when \(s_0 \) is rejected by \(c_1 \) in \(\Gamma^{m} \) step \(l \) of the SOSM algorithm. At that step, \(c_1 \) must have exhausted its capacity, \(|\mu(c_1)| = q_{c_1} \), and \(s \succ_{c_1} s_0, x = o, r \), for all \(s \) tentatively accepted by \(c_1 \) at step \(l \). Since \(\hat{\mu}(s_0) = c_1 \), there must have another student, denote by \(s_1 \), such that \(s_1 \) is tentatively accepted by \(c_1 \) at step \(l \) (in \(\Gamma^{m} \)) but matches with another school in \(\hat{\Gamma}^{m} \). Recall that at step \(l \), \(s_0 \) is rejected by \(c_1 \), it implies that \(s_1 \succ_{c_1} s_0 \).

I first show that \(s_1 \) must be a majority student who has applied to \(c_1 \) at a step earlier than \(l \) in \(\Gamma^{m} \). Otherwise, if \(s_1 \in S^m \), because \(\hat{\mu} \) is Pareto dominated by \(\mu \) for all \(s \in S^m \), while \(\mu(s_1) \neq \hat{\mu}(s_1) \), it implies that \(\mu(s_1)P_{a_1}\hat{\mu}(s_1) \). Also, recall that \(s_1 \) is tentatively accepted by \(c_1 \) before her final match in \(\Gamma^{m} \), \(c_1R_{a_1}\mu(s_1) \). I have \(c_1P_{a_1}\hat{\mu}(s_1) \). Since the stronger affirmative action \(\tilde{r}^m \) only increases the capacity of some \(c^{r} \), (\(s_1, c_1 \)) forms a
blocking pair in $\tilde{\Gamma}^m$, which contradicts the stability of $\tilde{\mu}$ (with minority reserve). Thus, $s_1 \in S^M$. Obviously, s_1 applies to c_1 at a step earlier than l.

Next, since $\tilde{\mu}(s_1) \neq c_1$, while $s_1 \succ_c^l s_0$ and $s_0, s_1 \in S^M$, it implies that $\tilde{\mu}(s_1)P_s c_1$. Otherwise, (s_1, c_1) is a blocking pair in $\tilde{\Gamma}^m$. Combine with $c_1R_s \mu(s_1)$, I have $\tilde{\mu}(s_1)P_s \mu(s_1)$. Denote $\tilde{\mu}(s_1) = c_2$. Recall that in Γ^m, s_1 applies to c_1 before step l. Without loss of generality, denote this step by $l - 1$. I can repeat the proceeding arguments for s_0 and s_1, and construct a set of l majority students who are all better-off in $\tilde{\Gamma}^m$. That is, $\tilde{\mu}(s_i)P_s c_i R_s \mu(s_i), i = \{0, \ldots, l - 1\}, s_j \in S^M$. c_i belongs to a set of l schools in which for each s_i, s she is tentatively accepted at step $l - i$. In particular, let step 1 be the step that initiates the matching in market Γ^m when s_{l-1} applies to c_{l-1}. Because s_{l-1} applies to c_{l-1} at the first step, it implies that $c_{l-1}P_{s_{l-1}}c_i$ for all $c_i \in C \setminus c_{l-1}$. Recall that $c_{l-1} \neq \tilde{\mu}(s_{l-1})$, which contradicts to $\tilde{\mu}(s_{l-1})P_{s_{l-1}}c_{l-1}$.

\square

1.6.2 Proof of Theorem 1.1

(i) Type-specific acyclicity \implies Respect the spirit of reserve-based affirmative action. I prove the contrapositive, such that if $\mu(s)R_s \tilde{\mu}(s)$ for all $s \in S^m$, and $\mu(s)P_s \tilde{\mu}(s)$ for at least one $s \in S^m$, there must contain a type-specific cycle with at least two schools and three students.

Lemma 1.1 indicates that if $\tilde{\mu}(s)$ is Pareto dominated by $\mu(s)$ for all $s \in S^m$, then there has at least one $s' \in S^M$, $\mu(s')P_s \tilde{\mu}(s')$. Denote $\tilde{S} = \{s \in S|\mu(s)P_s \tilde{\mu}(s)\}$ be the set of students strictly prefer the matching μ. Because $\mu(s)R_s \tilde{\mu}(s)$ for all $s \in S \setminus \tilde{S}$, for those who are not strictly worse off after implementing $\tilde{\Gamma}^m$, they are matched with the same school under μ, i.e., $S \setminus \tilde{S} = \{s \in S|\mu(s) = \tilde{\mu}(s)\}$.

Choose a set of students from \tilde{S}, $\tilde{S}' \subseteq \tilde{S}$, such that for all $s \in \tilde{S}'$, $\tilde{\mu}(s) \neq s$. \tilde{S}' is nonempty. Otherwise, there has at least one minority student $s \in \tilde{S}$ and $\tilde{\mu}(s) = s$, such that s and $\mu(s)$ forms a blocking pair after the stronger affirmative action $\tilde{\Gamma}^m$. Further, \tilde{S}' contains at least one minority student and one majority student. Because if all $s' \in S^M \cap \tilde{S}$, $\tilde{\mu}(s') = s'$, then for some $s \in S^m \cap \tilde{S}$, s and $\mu(s)$ forms a blocking pair after $\tilde{\Gamma}^m$.

Without loss of generality, denote $s_j \in S^M \cap \tilde{S}$ who is directly affected by $\tilde{\Gamma}^m$.\footnote{A majority student s who is directly affected by a stronger affirmative action $\tilde{\Gamma}^m$ in the sense that if $\mu(s) = c$ and $\tilde{\mu}(s) \neq c$, $c^m < c^m$, then there is a minority student s' such that $\mu(s') \neq c, cP_s \mu(s')$, and s' is tentatively accepted by c at the step when s is rejected. Further, by $c^m < c^m$, I know that $\mu(s) = c^m$;
\(\mu(s_j) = c_0 \). Since \(c_0P_s\tilde{\mu}(s_j) \), and \(\tilde{\mu} \) is stable (Hafalir et al., 2013), this implies that

\[|\tilde{\mu}(c_0)| = q_{c_0}, \quad |\tilde{\mu}(c_0) \cap S^m| = \tilde{\Gamma}_0^m \]

and for all \(s \) who are tentatively accepted by \(c_0 \), \(s \succ^r x, s_j, x = o, r \). Since \(s_j \) is a majority student who is directly affected by the stronger affirmative action \(\tilde{\Gamma} \), there has a minority student tentatively accepted by \(s_j \). Otherwise, \((s, c_0) \) forms a blocking pair. However, \((s, c_0) \) forms a blocking pair in \(\tilde{\Gamma} \). Because \(s_{j} \) cannot be rejected by an majority student from \(c_0 \), there must have another minority student, denote by \(s_k \), such that \(s_k \in S^m \cap \tilde{S} \); \(s_k \in \tilde{\mu}(c_0) \mu(c_0) \) and \(s_k \succ^r s_j \). Thus, I have

\[s_k \succ^r s_j, \quad s_k, s_j \in S^m, \quad s_j \in S^{M} \quad (1.1) \]

Denote \(\mu(s_k) = c_k \). Because \(c_kP_s\tilde{\mu}(c_k) \) and \(\tilde{\mu} \) is stable, it implies that \(|\tilde{\mu}(c_k)| = q_{c_k} \), and there exists a student in \(\tilde{S} \), denote by \(s_{k-1} \), such that

\[s_{k-1} \in \tilde{\mu}(c_k) \mu(c_k), \quad s_{k-1} \succ^r s_k \quad (1.2) \]

Otherwise, \((s_k, c_k) \) forms a blocking pair in \(\tilde{\Gamma} \). Apply similar arguments of \(s_{k-1}, s_k \) and \(c_{k-1}, c_k \) for each student in \(\tilde{S} \) repeatedly. Because the set of students in \(\tilde{S} \) are finite, let \(\{s_0, s_1, \ldots, s_{k-2}, s_{k-1}\} \in \tilde{S} \backslash \{s_k\} \), I can construct a finite sequence of schools \(c_1, c_2, \ldots, c_{k-1}, c_k \) such that for each \(t \in \{0, 1, 2, \ldots, k - 1\} \)

\[s_t \in \tilde{\mu}(c_{t+1}) \mu(c_{t+1}), \quad \mu(s_t) = c_t, \quad c_tP_s\tilde{\mu}(c_{t+1}) \quad (1.3) \]

\[|\tilde{\mu}(c_t)| = q_{c_t}, \quad s \succ^x s_t, \quad x = o, r, \text{ for each } s \in \tilde{\mu}(c_t) \quad (1.4) \]

In particular, I have

\(s \succ^x s', \text{ and } s \text{ is tentatively accepted by } s' \) (before \(s' \) applies to \(c \)) after the stronger affirmative action. The set of majority students that are directly affected by \(\tilde{\Gamma} \) is nonempty; otherwise, \(\tilde{\mu}(\tilde{\Gamma}) = \mu(\tilde{\Gamma}) \).
It is not difficult to see that $s_0 \equiv s_j$ by preceding arguments. Combining (1.1) and (1.5) gives us the cycle condition. The scarcity condition is satisfied by (1.2), (1.3) and (1.4), and the stability of SOSM.

(ii) Respect the spirit of reserve-based affirmative action \implies Type-specific acyclicity.

Suppose that $\tilde{\Gamma}_m$ has a type-specific cycle, I use a counter-example to show that the stronger minority reserve policy \tilde{r}_m will cause all minorities worse off.

Recall Example 1.1 that after implementing $\tilde{r}_m c_1 = 1$, the three students $s_1 \in S^m$ and $s_2, s_3 \in S_m$, and the two schools $\{c_1, c_2\}$, constitute a type-specific cycle: Condition (C) is given by $s_2 \succ_{c_1} s_3 \succ_{c_1} s_1 \succ_{c_1} s_2$, Condition (S) is trivially satisfied because $q_{c_1} = 1, l = 1, 2$. The matching outcome after the stronger affirmative action \tilde{r}_m is $\mu(s_1) = c_2$ and $\mu(s_2) = c_1$. Compared with the corresponding matching before \tilde{r}_m: $\mu(s_1) = c_1$ and $\mu(s_2) = c_2$, it is obviously that s_2 is strictly worse off after \tilde{r}_m while s_3 is indifferent. \square

1.6.3 Proof of Lemma 1.2

I prove the Lemma by contradiction. Suppose at least one of the minority students is strictly worse off in $\tilde{\Gamma}_m$ compare to Γ_m, but no majority students are strictly worse off after implementing \tilde{r}_m. Let \tilde{S}_m be the set of minority students who are strictly worse off after \tilde{r}_m, $\mu(s)P_{\alpha} \tilde{\mu}(s)$, for all $s \in \tilde{S}_m \subset S^m$. And for all $s' \in S^m \setminus \tilde{S}_m$, either $\tilde{\mu}(s')R_{\alpha} \mu(s')$ or $\tilde{\mu}(s')P_{\alpha} \mu(s')$.

Suppose that a minority student, denote by s_0, is strictly worse off in $\tilde{\Gamma}_m$ compare to Γ_m. Let $\mu(s_0) = c_1$. Since $c_1 P_{\alpha} \tilde{\mu}(s_0)$, the capacity of c_1 is full at the step when s_0 is rejected by c_1 in $\tilde{\Gamma}_m$, there is another student, say s_1, such that s_1 is tentatively accepted by c_1 when s_0 is rejected. Denote the step when s_1 applies to c_1 (or equivalently, s_0 is rejected by c_1) in $\tilde{\Gamma}_m$ be step l of the SOSM algorithm.

I first show that if s_1 is a majority student, then there have a group of minority students, denote by \tilde{S}_m^1, who are strictly worse off in $\tilde{\Gamma}_m$ compare to Γ_m, i.e., $\tilde{S}_m^1 \in \tilde{S}_m$, and apply to c_1 at a step earlier than l in $\tilde{\Gamma}_m$. Since $s_1 \in S^m$, and no majority students
are strictly worse off after implementing $\bar{\Gamma}^m$ by assumption, I know that either $c_1 P_o \mu(s_1)$ or $c_1 R_o \mu(s_1)$. Recall that $c_1 P_o \tilde{\mu}(s_0)$, $s_0 \in S^m$, and all minorities have higher priorities than any majorities in all reserve sub-schools c', I know that $s_1 \succsim_{c'} s_0$, $s_0 \in \mu(c'_1)$ but $s_0 \notin \tilde{\mu}(c'_2)$. Otherwise (s_0, c_1) would form a blocking pair in $\bar{\Gamma}^m$. Therefore, there must have a group of minority students, denote by $\tilde{\mathcal{S}}^m$, who apply to and are tentatively accepted by $\bar{\Gamma}^m$ at step earlier than l (when c_1 rejects s_0) in $\bar{\Gamma}^m$, but do not apply to c_1 in Γ^m. $s \succsim_{c'_1} s_0$ for all $s \in \tilde{\mathcal{S}}^m$, but $\mu(s)P_o c_1$ for all $s \in \tilde{\mathcal{S}}^m$. Otherwise, (s, c_1) are blocking pairs in Γ^m for all $s \in \tilde{\mathcal{S}}^m$. Without losing of generality, denote the least preferred student in $\tilde{\mathcal{S}}^m$ be s_2 (if $|\tilde{\mathcal{S}}^m| = 1$, then $\tilde{\mathcal{S}}^m \equiv s_2$), such that $s \succsim_{c'_1} s_2 \succsim_{c'_1} s_0$ for all $s \in \tilde{\mathcal{S}}^m \setminus s_2$.

If s_1 is a minority student, I know that s_1 must be strictly worse off in $\bar{\Gamma}^m$ compare to Γ^m, $\mu(s_1)P_o c_1$. Otherwise, (s_1, c_1) forms a blocking pair in Γ^m. Thus, $s_1 \in \tilde{\mathcal{S}}^m$, and s_1 is rejected by $\mu(s_1)$ at a step earlier than l by another student, denote by \hat{s}. Since s_0 is a random minority student who is strictly worse off after $\bar{\Gamma}^m$, I can equivalently treat s_1 as s_0 when $s_1 \in S^m$. Therefore, (i) if $\hat{s} \in S^m$, repeat the same arguments in this paragraph, I know that $\hat{s} \in \tilde{\mathcal{S}}^m$, rewrite \hat{s} as s_2; (ii) if $\hat{s} \in S^{HL}$, apply the arguments in the previous paragraph (i.e., equivalently treat \hat{s} as s_1 when $s_1 \in S^{HL}$), and I have another set of minority students, denote by $\tilde{\mathcal{S}}^m_2$, who are strictly worse off in $\bar{\Gamma}^m$ compare to Γ^m, write the least preferred minority student in $\tilde{\mathcal{S}}^m_2$ as s_2.

Hence, if there is one minority student, s_0, who is strictly worse off in $\bar{\Gamma}^m$ compare to Γ^m, there must have another minority student, s_2, who is also strictly worse off in $\bar{\Gamma}^m$ and is rejected by $\mu(s_2)$ at a step earlier than l in $\bar{\Gamma}^m$. Repeat the preceding arguments I can construct a set of l minority students, denote by $\tilde{\mathcal{S}}_l$, such that $c_{i+1} P_o c_i$, $i = \{1, \ldots, l\}$, $s_i \in \tilde{\mathcal{S}}_l \subset \tilde{\mathcal{S}}^m$, where $c_{i+1} = \mu(s_i)$, and c_1 belongs to a set of l schools in which s_i is tentatively accepted by c_1 at step $l - i + 1$ of the SOSM algorithm in $\bar{\Gamma}^m$. In particular, $s_i \in \tilde{\mathcal{S}}_l$ applies to and is tentatively accepted by c_1 at step 1. It implies that $c_1 P_o c_i$, for all $c \in C \setminus c_1$, recall $\mu(s_i) \neq c_i$, which contradicts to $\mu(s_1)P_o c_1$.

\footnote{i.e., all minority students belong to $\tilde{\mathcal{S}}^m$ have higher priorities in c_1 than s_0 in both the reserve sub-school and the original sub-school ($\tilde{\mathcal{S}}^m$). Recall that the point-wise priorities among the minorities do not change in both kinds of sub-schools.}
1.6.4 Proof of Theorem 1.2

(i) **Strongly type-specific acyclicity** \(\Rightarrow\) **Respect the improvement of reserve-based affirmative action.** Suppose if \(\mu(s)P_s\hat{\mu}(s)\) for at least one \(s \in S^m\), I show that \(\hat{\Gamma}^m\) must have a quasi type-specific cycle with two schools and three students.

Lemma 1.2 implies that if \(\mu(s)P_s\hat{\mu}(s)\) for at least one \(s \in S^m\), then \(\mu(s')P_s\hat{\mu}(s')\) for at least one \(s' \in S^M\). Denote \(s_0\) be a minority student who is strictly worse off after the stronger affirmative action \(\tilde{\Gamma}^m\). Let \(\mu(s_0) = c_0\), and step \(k\) be the step of the SOSM algorithm when \(s_0\) is rejected by \(c_0\) in \(\hat{\Gamma}^m\). Without loss of generality, I can construct a set of \(k - 1\) students, \(s_1 = \{s_1, s_2, \ldots, s_{k-1}\} \in S\), such that \(\mu(s_1)P_s\hat{\mu}(s_1) \neq s_1\), \(\mu(s_1) = c_1\), \(l = \{1, \ldots, k - 1\}, k \geq 2\). Let \(k - l\) be the step when \(s_l\) is rejected by \(\mu(s_l)\) in \(\hat{\Gamma}^m\). \(s_l\) applies to \(c_{l-1}\) at step \(k - l + 1\). In particular, I have \(s_1\) rejected by \(\mu(s_1) = c_1\) at step \(k - 1\) and applies to \(c_0\) at step \(k\). Thus,

Lemma 1.2 implies that if \(\mu(s)P_s\hat{\mu}(s)\) for at least one \(s \in S^m\), then \(\mu(s')P_s\hat{\mu}(s')\) for at least one \(s' \in S^M\).

\(\text{(i.a.)}\) if all students in \(s_1\) except \(s_{k-1}\) are minorities. By my construction of \(s_1\), \(s_{k-1}\) is rejected by \(\mu(s_{k-1}) = c_{k-1}\) at step 1 of the SOSM algorithm in \(\tilde{\Gamma}^m\), and applies to \(c_{k-2}\) in the next step. Obviously, \(s_{k-1}\) is directly affected by \(\tilde{\Gamma}^m\) (recall Footnote 31), and \(s_{k-1} \in S^M\). Thus, there must have another minority student, denote by \(\hat{s}, \hat{s} \in S^m \setminus s_1\), who prefers \(c_{k-2}\) to all the rest schools but is rejected by \(c_{k-1}\) in \(\hat{\Gamma}^m\) (i.e., before the stronger affirmative action \(\tilde{\Gamma}^m\)). That is, \(c_{k-1}P_{s_1}c\), for all \(c \in C \setminus c_{k-1}, s_{k-1} > c_{k-1}, \hat{s}\) but \(\hat{s} > c_{k-1}, s_{k-1}\). Otherwise, \((s_{k-1}, c_{k-1})\) forms a blocking pair in \(\hat{\Gamma}^m\). In addition, I know that \(s_{k-2}\) is rejected by \(\mu(s_{k-2}) = c_{k-2}\) at step 2, when \(s_{k-2}\) applies to \(c_{k-2}\). As \(s_{k-1} \in S^M\) and \(s_{k-2} \in S^m\), I have \(s_{k-1} > s_{k-2}\). Thus, \(\hat{s} > c_{k-1}, s_{k-1} > c_{k-2}, s_{k-2}\).

Lemma 1.2 implies that if \(\mu(s)P_s\hat{\mu}(s)\) for at least one \(s \in S^m\), then \(\mu(s')P_s\hat{\mu}(s')\) for at least one \(s' \in S^M\).

\(\text{(i.b.)}\) if \(s_1 \in S^m\), and there is at least one student in \(s_1\) besides \(s_{k-1}\) is a majority student. Let \(s_l\) be a minority student in \(s_1 \setminus \{s_1\}\), who is rejected from \(\mu(s_l) = c_1\) in \(\hat{\Gamma}^m\) when a majority student in \(s_1\) applies to \(c_1\). Denote this majority student \(s_{l-1}\) and \(\mu(s_{l-1}) = c_{l-1}\). Thus, \(s_{l-1} > s_l\) (a minority student can be rejected by a majority student only from an original sub-school). By my construction of \(s_1\), there is another student \(s_{l-2} \in s_1\) who is tentatively accepted by \(c_{l-1}\) at the step when \(s_{l-1}\) is rejected by \(c_{l-1}\). Thus, \(s_{l-2} > c_{l-1}, s_{l-1}\) (a majority student can be rejected by another student only from a reserve sub-school).

\(\text{With } s_{l-2} \in S, s_{l-1} \in S^M, \text{ and } s_l \in S^m, \text{ I have } s_{l-2} > c_{l-1}, s_{l-1} > c_{l-1}, s_l.\)

\(\text{(i.c.)}\) if \(s_1 \in S^M\). Since \(s_0 \in s^m\), \(c_0\) rejects \(s_0\) at step \(k\) of the SOSM algorithm when \(s_1\) applies to \(c_0\), I have \(s_1 > c_0, s_0\). Similar to the previous cases, by my construction of \(s_1\),
s_1 is rejected by \(\mu(s_1) = c_1 \) at step \(k - 1 \) when \(s_2 \in \mathbf{s}_1 \) applies and is tentatively accepted by \(c_1 \). Thus, \(s_2 \succ^* c_1 s_1 \), and I have \(s_2 \succ^* c_1 s_1 \succ^* s_0 \), with \(s_2 \in \mathbf{S} \), \(s_1 \in \mathbf{S}^d \) and \(s_0 \in \mathbf{S}^m \).

Condition (S') is trivially satisfied through the preceding arguments and the stability of SOSM in all three cases.

(ii) \textit{Respect the improvement of reserve-based affirmative action} \(\implies \text{Strongly type-specific acyclicity} \). Suppose that \(\tilde{\Gamma}^m \) has a quasi type-specific cycle, I argue that there is at least one minority student strictly worse off after implementing the stronger minority reserve policy \(\tilde{r}^m \). Remark 1.2 implies that if \((\succ, (q, r^m)) \) has a type-specific cycle, then it has a quasi type-specific cycle. Example 1.1 used in the Proof of Theorem 1.1 (Appendix 1.6.4), which constructs a type-specific cycle and leaves \(s_2 \) strictly worse off after \(\tilde{r}^m \), suffices for my purpose. \(\square \)

1.6.5 Proof of Theorem 1.3

For a given \(\Gamma \), let \(|\mathbf{S}^m| = m \) and \(s_j \) be a random majority student. Choose two schools \(c,c' \in \mathbf{C} \) and relabel the minority students with the lowest priority and second lowest priority in \(c \) as \(i_{m-1} \) and \(i_m \), and in \(c' \) as \(k_{m-1} \) and \(k_m \) respectively. I prove the contrapositive for both of the two parts.

Part (i) Suppose that \(s_j \) ranks higher than two different minority students in \(c' \) and \(c'' \), I will show that \(\Gamma \) contains a type-specific cycle.

Case (i.a.) \(i_m \neq k_m \). Because \(s \succ^* i_m \), for all \(s \in \mathbf{S}^m \setminus \{i_m\} \), I have \(k_m \succ^* i_m \), and there are other \(m - 2 \) minority students who have higher priority than \(k_m \) in \(c \) (recall that the priority order are unchanged among the minorities within \(c' \) and \(c'' \)). As I assume \(q_c + q_{c'} \leq m \), it implies that \(q_c - 1 \leq m - 2 \). Thus, I can find a set of \(q_c - 1 \) minority students who have higher priority than \(i_m \) in \(c \) from \(\mathbf{S}^m \setminus \{i_m, k_m\} \), denote by \(\mathbf{S}_c \). For school \(c' \), because \(m - 2 - (q_c - 1) \geq m - 2 - (m - q_{c'} - 1) = q_{c'} - 1 \), I can find a set of minority students that are distinct from \(i_m, k_m \) and \(\mathbf{S}_c \) who are ranked higher than \(k_m \) in \(c' \), denote by \(\mathbf{S}_{c'} \). Condition (C) is satisfied by \(k_m \succ^*_c i_m \succ^*_c s_j \succ^*_c k_m, \mathbf{S}_c \) and \(\mathbf{S}_{c'} \) suffices Condition (S).

Case (i.b.) \(i_m = k_m \). Without loss of generality, suppose that \(s_j \succ^*_c k_{m-1} \). Since there are \(m - 2 \) minority students who have higher priority than \(k_{m-1} \) in \(c' \), with similar argument in Case (i.a.), I can find a set of \(q_{c'} - 1 \) minority students that are distinct
from k_m, k_{m-1}, denote by S_c and a set of $q - 1$ minority students that are distinct from k_m, k_{m-1} and S_c, denote by S_c'. Condition (C) is satisfied by $k_{m-1} \succ_c^r i_m \succ_c^r s_j \succ_c^o k_{m-1}$, S_c and S_c' suffices Condition (S).

Part (ii) I have already shown in Part (i) that when s_j ranks higher than two different minority students in two schools, there is a type-specific cycle. Recall Remark 1.2, if $(\succ_c, (q, r^m))$ has a type-specific cycle, then it has a quasi type-specific cycle. Thus, I only need to discuss the situation when there is only one minority student ranked lower than s_j in one (original sub-)school. Without loss of generality, suppose that $s_j \succ_c^o k_m$.

Case (ii.a.) $i_m \neq k_m$, since $i_m \succ_c^r s_j$, i_m, s_j and k_m suffice Condition (C').

Case (ii.b.) $i_m = k_m$, Condition (C') is given by $i_{m-1} \succ_c^r s_j \succ_c^o k_m$. Condition (S') is satisfied in both of the two cases with the same arguments in (i.a.).

1.7 Appendix for Chapter 1: Proofs of Large Market Results

The proof involves a few steps. In brief, I first show that there is a large number of schools that are not listed on any minorities’ preference orders at the end of Loop 1 of the Sequential SOSM-R. Then, under the regularity conditions (Definition 1.6), I show that the probability that no majority students apply to such schools converges to one when the number of schools are sufficiently large.

Define the Stochastic Sequential SOSM-R (Algorithm 1.)

Notations Use A_s (and D_s) to record schools that $s(m)$ (and $s(M)$) has already drawn from \mathcal{P}^n (respectively). When $|A_s| = k$ is reached, A_s is the set of schools acceptable to s. Also, B_i (and E_j) to represent the set of rejected minorities (and majorities) from Loop 2 (and Loop 1, respectively).

1. Initialization: Let $l(m) = 1$ and $l(M) = 1$. For every $s(m) \in S(m)$ ($s(M) \in S(M)$), respectively), let $A_s = \emptyset$ ($D_s = \emptyset$, respectively). Order all majorities and minorities in their respective arbitrarily fixed manner. Set $B^o = \emptyset$, $E^o = \emptyset$, $i = 0$.

2. Loop 1:
(a) If $B^i = \emptyset$, then go to Step (2b). Otherwise, pick some minority $s(m)$ in B^i, let $B^{i+1} = B^i \backslash s(m)$, increment i by one and go to Step (2c).

(b) Choose the applicant:

i. If $l(m) \leq |S(m)|$, then let $s(m)$ be the $l(m)$th student and increment $l(m)$ by one.

ii. If not, then go to Step (3).

(c) Choosing the applied:

i. If $|A_s| \geq k$, then return to Step (2a).

(ii.) If not, select c randomly from distribution P^n until $c \notin A_s$, and add c to A_s. Split each c listed by any students into two corresponding sub-schools, original sub-school ($c(o)$) and reserve sub-school ($c(m)$), according to the process defined in Section 1.2.2, and adapt the preferences of schools and students correspondingly.

(d) Acceptance and/or rejection:

i. Each $s(m)$ first applies to the reserve sub-school ($c(m)$) of her most favorable school c. If $c(m)$ prefers each of its current mates to $s(m)$ and there is no empty seat, $c(m)$ rejects $s(m)$. $s(m)$ then applies to the corresponding original sub-school $c(o)$ of c. If $c(o)$ prefers each of its current mates to $s(m)$ and there is no empty seat, $c(o)$ rejects $s(m)$. Go back to Step (2c).

(ii.) If $c(m)$ has no empty seat but it prefers $s(m)$ to one of its current mates, then $c(m)$ rejects the least preferred student tentatively accepted. If the rejected student is a majority, add her to E^j, and go to Step (2a). If the rejected student is a minority, let this student be $s(m)$. Let her apply to the corresponding original sub-school $c(o)$ of c.

A. If $c(o)$ prefers each of its current mates to $s(m)$ and there is no empty seat, then $c(o)$ rejects $s(m)$, and go back to Step (2c).

B. If $c(o)$ prefers $s(m)$ to one of her current mates, $s(m)$ is accepted. If the rejected student is a majority, add her to E^j, and go to Step (2a). If the rejected student is a minority, let this student be $s(m)$, and go back to Step (2c).
(iii.) If \(c(m)\) prefers each of its current mates to \(s(m)\) and there is no empty seat, then \(c(m)\) rejects \(s(m)\). If the corresponding \(c(o)\) of \(c\) also has no empty seat but it prefers \(s(m)\) to one of its current mates, then \(c(o)\) rejects the least preferred student tentatively accepted. If the rejected student is a majority, add her to \(E^{j}\), and go to Step (2a). If the rejected student is a minority, let this student be \(s(m)\) and go back to Step (2c).

(iv.) If either \(c(m)\) or its corresponding \(c(o)\) has an empty seat, then \(s(m)\) is tentatively accepted. Go back to Step (2a).

3. Loop 2:

(a) If \(E^{j} = \emptyset\) but \(B^{i} \neq \emptyset\). Go to Step (2)

(b) If \(E^{j}\) and \(B^{i}\) are both empty. Go to Step (3d).

(c) Otherwise, pick some minority \(s(M)\) in \(E^{j}\), let \(E^{j+1} = E^{j} \setminus s(M)\), increment \(j\) by one and go to Step (3e).

(d) Choose the applicant:

i. If \(l(M) \leq |S(M)|\), then let \(s(M)\) be the \(l(M)^{th}\) student and increment \(l(M)\) by one.

ii. If not, then terminate the algorithm.

(e) Choosing the applied:

i. If \(|D_{s}| \geq k\), then return to Step (3).

ii. If not, select \(c\) randomly from distribution \(P^{m}\) until \(c \notin D_{s}\), and add \(c\) to \(D_{s}\). Split each \(c\) listed by any students into two corresponding sub-schools, the minority-favoring reserve (\(c(m)\)) and the original (\(c(o)\)), according to the process defined in Section 1.2.2, and adapt the preferences of schools and students correspondingly.

(f) Acceptance and/or rejection (“Round \(j\)”):

i. Each \(s(M)\) first applies to the original school (\(c(o)\)) of her most favorable school \(c\). If \(c(o)\) prefers each of its current mates to \(s(M)\) and there is no empty seat, \(c(o)\) rejects \(s(M)\). \(s(M)\) then applies to the corresponding
reserve sub-school \(c(m) \) of \(c \). If \(c(m) \) prefers each of its current mates to \(S(M) \) and there is no empty seat, then \(c(m) \) rejects \(s(M) \). Go back to Step (3e).

ii. If \(c(o) \) has no empty seat but it prefers \(s(M) \) to one of its current mates, then \(c(o) \) rejects the least preferred student tentatively accepted. If the rejected student is a minority, add her to \(B \) and go to Step (3c). If the rejected student is a majority, let this student be \(s(M) \). Let her apply to the corresponding reserve sub-school \(c(m) \) of \(c \).

A. If \(c(m) \) prefers each of its current mates to \(S(M) \) and there is no empty seat, then \(c(m) \) rejects \(s(M) \). Go back to Step (3e).

B. If \(c(m) \) prefers \(s(M) \) to one of its current matched majority, \(s(M) \) is accepted, and let the rejected majority student be \(s(M) \), go to Step (3e).

iii. If \(c(o) \) prefers each of its current mates to \(s(M) \) and there is no empty seat, then \(c(o) \) rejects \(s(M) \). If the corresponding \(c(m) \) of \(c \) also has no empty seat but it prefers \(s(m) \) to one of current matched majority, then \(c(m) \) rejects the least preferred majority tentatively accepted. Let the rejected majority student be \(s(M) \), go to Step (3e).

iv. If either \(c(o) \) or its corresponding \(c(m) \) has an empty seat, then \(s(M) \) is tentatively accepted. Go back to Step (3e).

Step 2: The market is type-specific acyclic with a high probability

Denote \(V_n \) be a random set of schools that are either not listed in any minorities’ preference orders at the end of Loop 1 of the Sequential SOSM-R, or listed by some minority students but are not required to implement affirmative actions. Let \(X_n = |V_n| \) be a random variable counts the number of schools in \(V_n \).\(^{33}\) I first state the following result which provides a lower bound of \(X_n \) at the beginning of Loop 2. Since it is almost identical to Lemma 2 of Kojima et al. (2013), the proof is omitted.

\(^{33}\) I denote a random variable and its realization by the same letter, if no confusion arises.
Lemma 1.3: For any $n > 4k$

$$E[X_n] \geq \frac{n}{2} e^{-16\lambda k}$$

Kojima et al. (2013) write their result based on the set of schools not listed by any minority students, denote by Y_n, and prove that $E[|Y_n|] \geq \frac{n}{2} e^{-16\lambda k}$ (i.e. a large set of schools not listed by any minority students). Since I denote X_n to include all schools in Y_n and an additional set of schools that even have been listed by some minorities but without seats reserved for minorities (i.e. the capacity of its sub-school $c(m)$ is zero). Clearly, $E[X_n] \geq E[|Y_n|]$. Let $Pr(\hat{\Gamma}^{n,tsc})$ be the probability that the corresponding priority structure in a random market $\hat{\Gamma}^n$ is type-specific acyclic. Also, let $\bar{R} = bn^a$ be the upper bound on the number of seats reserved for minority students in the random market $\hat{\Gamma}^n$. The following lemma states that when market is sufficiently large (and conditional on $X_n > E[X_n]$, it becomes type-specific acyclic with a high probability.

Lemma 1.4: For any sufficiently large n,

$$Pr\left(\hat{\Gamma}^{n,tsc} \mid X_n > \frac{E[X_n]}{2}\right) \geq \left(1 - \frac{\bar{R}}{E[X_n]/4r}\right)^{\bar{R}} \tag{1.6}$$

if the conditioning event has a strictly positive probability.

Proof. First, note that there are at most \bar{R} seats reserved for minorities, which also implies the maximum number of schools implemented with minority reserve policy (i.e. allocate one minority reserved seat to one school). Let C_1 be the set of schools implemented with minority reserve policy and are tentatively matched to one minority student in its $r(m)$ at the end of Loop 1. Recall the condition (4) of Definition 1.6, which can be rewritten as

$$\sum_{c \in C_1} p_c \leq r\bar{R} \cdot \min_{c \in C} \{p_c\}$$

Also, denote C_2 as a set of schools belong to X_n. Obviously,
\[
\sum_{c \in C_1} p_c \geq X_n \cdot \min_{c \in C} \{p_c\}
\]

I am interested in computing the probability that in Round 1 of Step (3) of Algorithm 1. That is the probability when a majority student applies to some school not in \(C_1\), which is bounded below by:

\[
1 - \frac{\sum_{c \in C_1} p_c}{\sum_{c \in C_2} p_c + \sum_{c \in C_1} p_c} \geq 1 - \frac{\bar{R}}{\sum_{c \in C_1} p_c + \bar{R} + R} > 1 - \frac{\bar{R}}{\frac{E[X_n]}{2} + R}
\]

Now assume that in all Rounds 1, \ldots, \(j-1\), no majority matches to schools in \(C_1\). Then there are still at least \(X_n - (j-1)\) schools which are either not listed by any minorities, or matched with some minorities but without minority reserved seat(s). This follows since at most \(j-1\) schools have had their seats filled in Rounds 1, \ldots, \(j-1\) from the set of schools in \(V_n\). Similar to the above procedures, I can compute that in Round \(j\), the probability that the Sequential SOSM-R produces the same match before and after implementing a (stronger) affirmative action policy is at least,

\[
1 - \frac{\bar{R}}{X_n - (j-1) + R} > 1 - \frac{\bar{R}}{\frac{E[X_n]}{2} - (j-1) + R}
\]

Since there are at most \(\bar{R}\) minorities can be replaced by majorities from their minority reserved seats ex ante, the probability that Algorithm 1 produces a matching without initiating a rejection chain after a (stronger) affirmative action policy (conditional on \(X_n > \frac{E[X_n]}{4}\)) is at least,

\[
\prod_{j=1}^{\bar{R}} \left(1 - \frac{R}{\frac{E[X_n]}{2} - (j-1) + R} + \bar{R}\right) \geq \left(1 - \frac{R}{\frac{E[X_n]}{2} - (\bar{R} - 1) + R}\right)^\bar{R} \geq \left(1 - \frac{R}{E[X_n]/4}\right)^\bar{R}
\]

where the first inequality follows as \(j \leq \bar{R}, j \in \{1, \ldots, \bar{R}\}\). The second inequality holds since \(E[X_n]/2 - \bar{R} + 1 \geq E[X_n]/4 > 0\), which follows from Lemma 1.3 and the assumption that \(n\) is sufficiently large. \(\square\)
The last step is to show that the unconditional type-specific acyclic probability converges to one as the market becomes large, which can be verified through the following inequalities.

\[
P_r \left(\hat{\Gamma}^{n,loc} \right) \geq P_r \left(X_n > \frac{E[X_n]}{2} \right) \cdot \left(1 - \frac{R}{E[X_n]/4r} \right)^{\hat{R}} \\
\geq \left(1 - \frac{4}{E[X_n]} \right) \cdot \left(1 - \frac{R}{E[X_n]/4r} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8e^{16\lambda_k}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \\
\geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}}
\]

The first inequality is given by Equation (1.6) (of Lemma 1.4). The second inequality follows the result by Kojima et al. (2013), and the last inequality is given by Lemma 1.3.

For the two items of the last line, it is obvious that the first item converges to one as \(n \to \infty \). For the second item, recall that there exists \(b > 0 \), such that \(\bar{R} < bn^{a} \), for any \(n \) (condition (4) of Definition 1.6). Therefore,

\[
\left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}} \geq \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right) \cdot \left(1 - \frac{8rR_{e^{16\lambda_k}}}{n} \right)^{\hat{R}}
\]

where the last inequality follows as \((1 - \beta)^x \geq e^{-\beta} \), when \(\beta, x > 0 \). Since I assume \(a \in [0, \frac{1}{2}) \), the term \(n^{2a-1} \) converges to zero as \(n \to \infty \). Thus, \((e^{8rR_{e^{16\lambda_k}}})^{n^{2a-1}} \) converges to one as \(n \to \infty \). This completes the proof of Theorem 1.4, given the (material) equivalence between type-specific acyclicity and respecting the spirit of a stronger minority reserve (Lemma 1.1).

□

51 In short, first \(P_r[X_n \leq \frac{E[X_n]}{2}] \leq P_r[X_n \leq \frac{E[X_n]}{2}] + P_r[X_n \geq \frac{E[X_n]}{2}] = P_r[|X_n - E[X_n]| \geq \frac{E[X_n]}{2}] \leq \frac{Var(X_n)}{(E[X_n]/2)^2} \), where the first inequality is by the fact that any probability is non-negative and less than or equal to one, and the second inequality is given by the Chebychev inequality. Next, use the result \(Var(X_n) \leq E[X_n]^2 \) by Immorlica and Mahdian (2005), I get \(P_r[X_n \leq \frac{E[X_n]}{2}] \leq \frac{1}{E[X_n]^2} \).
Bibliography

Abstract: This paper studies how ex ante differences in bidders' values affect their behavior in two standard multi-unit auction formats, uniform-price auction (UPA) and discriminatory-price auction (DPA). I characterize the set of asymmetric monotone Bayes–Nash equilibria in a simple multi-unit auction game in which two units of a homogeneous object are auctioned among a set of bidders with independent private values. I show that if a bidder possesses a stronger market position, she has less incentive to shade her bid for the second unit in a UPA, whereas in a DPA, weaker bidders tend to bid more aggressively on both of two units.

JEL Classification: D44

Keywords: multi-unit auctions, ex ante asymmetry.

2.1 Introduction

Auction markets with goods (assets) worth trillions of dollars are held every year around the world. Some noticeable examples include treasury bill, electricity, spectrum, oil...
drilling rights, and mineral rights. In most of these markets, the seller supplies more than one unit of goods, while bidders can also submit different prices for each unit on sale and there can be more than one winner.\(^1\) Partly because of their intrinsic analytic complexity, most extant literature of multi-unit auctions is restricted to the symmetric environment in which all bidders have the same valuation distribution. Symmetry gives a proper abstraction of the complex market environment when there are many small bidders. However, in circumstances with only a handful of qualified participants (e.g., procurement auctions), asymmetry may be a more reasonable assumption. For instance, in whole electricity markets, market incumbents are more likely to enjoy a competition advantage over newcomers through their lower marginal production costs.

In this paper, I am interested in understanding how ex ante differences in bidders’ distributions of valuations affect their behavior in two popular simultaneous sealed-bid multi-unit auction formats, discriminatory-price auction (henceforth DPA, also known as pay-as-bid auction) and uniform-price auction (henceforth UPA). In both auction formats, bidders submit bidding schedules that specify prices for different units. The seller then aggregates all submitted schedules to determine the market-clearing price, and winning bidders are allocated units for which their bids exceed the market-clearing price. These two formats differ in terms of payment rules: all winning bids are filled at the market-clearing price in the UPA, whereas in the DPA bidders pay their own bids for each of their winning units.

I study an auction market in which two units of an identical and indivisible good are sold to a set of ex ante asymmetric bidders, each with diminishing marginal values for the successive units. A bidder is stronger in the sense that she is more likely to have higher values for both units of the good than a weaker bidder. Such a feature is captured by imposing a standard stochastic dominance property to bidders’ value distributions (see, for example, Lebrun (1999), Waehrer (1999), Maskin and Riley (2000), and Cantillon (2008), who have used this property to study asymmetric single-unit auctions).\(^2\)

\(^1\) In this paper, I only discuss auctions with multiple copies of a homogeneous good, i.e., multi-unit auction. Auctions with heterogeneous goods are normally called multi-item auctions (See Chapter 4), or combinatorial auction if bids for packages are allowed.

\(^2\) To my knowledge, the only exception to the assumption of first-order stochastic dominance (or stronger) is Kirkegaard (2009). Instead of analyzing the system of differential equations that determines bidding strategies, Kirkegaard studies asymmetric first-price auctions by comparing the ratio of bidders’ (endogenous) payoffs to the ratio of their (exogenous) distribution functions.
Engelbrecht-Wiggans and Kahn (1998a,b) provide thorough analyses of the two multi-unit auction formats when the good is indivisible. In particular, Engelbrecht-Wiggans and Kahn (1998b) reveal the effect of demand reduction in the UPA, which reflects a bidder’s strategic shading of all her bids except on the first unit. The presence of strategic demand reduction not only causes allocation inefficiencies, and consequently a lower expected revenue for the seller; more importantly the diverse levels of bid shading significantly complicate the analyses of equilibrium bidding strategies in the UPA when bidders hold private information. Even though the UPA rules is the analog of second-price auction beyond the single-unit case, in most cases we can only depict bidders’ equilibrium strategies through a system of differential equations instead of having truthful reporting as their dominant strategies. Furthermore, the problems of multiplicity and non-monotonicity of equilibria are also prevalent in UPA. These theoretical challenges in analyzing auctions beyond the single-unit case have led to most progress in the multi-unit auction literature in the past decade coming from the empirical side, which aims to provide environment-specific revenue comparisons among different auction formats, especially between a DPA and a UPA.

This paper contributes to the literature by providing new equilibria characterizations for the DPA and the UPA when bidders have different valuation distributions. In an asymmetric DPA, my results imply that a weaker bidder tends to bid more aggressively on both units compared with her relatively stronger competitors (Theorem 2.1). As the direct extension of the first-price auction into multi-unit cases, the asymmetric equilibrium strategies in the DPA echo an analogous pattern, as in the case of asymmetric first-price auctions (Lebrun, 1999, Maskin and Riley, 2000). I further argue that in the DPA, a stronger bidder is more likely to pool her two bids (i.e., submit the same bid for both of the two units, even if she values them differently) than a weaker bidder. By contrast, I find that in the UPA a stronger bidder tends to decrease the level of demand reduction

3 An alternative approach is to consider a perfectly divisible good for which each bidder submits a continuous demand (bid) function for a share of the good (Wilson, 1979, Back and Zender, 1993, Ausubel et al., 2014). Although the assumption of a perfectly divisible good gives undeniable analytic convenience for revenue ranking in different multi-unit auction formats, this approach explicitly avoids the multi-dimensional origin of multi-unit auctions by assuming a single-dimensional linear type for all bidders.

4 See also Noussair (1995) for an earlier contribution.

5 The empirical multi-unit auction literature is quite abundant; among others, interested readers can refer to Athey and Haile (2007), Hickman et al. (2012) for two excellent reviews of the related literature.
compared with a weaker bidder when both of their valuations for the second unit are above
the corresponding threshold values for nonzero bids (Theorem 2.2). Because strategic
demand reduction is likely to create both an inefficient allocation and lower revenues for
the seller, the DPA seems to be a better candidate than the UPA when the effect of
demand reduction is severe. My results, however, imply that the unsatisfactory effects of
demand reduction in the UPA are partly remitted by the presence of asymmetric bidders.

The rest of the paper proceeds as follows. Section 2.2 introduces the model and as-
sumptions. Section 2.3 and Section 2.4 provide characterization results of asymmetric
UPA and DPA respectively. Section 2.5 concludes with discussions. All proofs are clus-
tered in Appendix 2.6.

2.2 Model

Two indivisible and identical units of a good are auctioned among a set of risk neutral
and payoff-maximizing bidders, \(N = \{1, \ldots, n\} \), \(|N| \geq 2\). The seller’s valuation to keep
unsold units is zero, and all bidders bid for both units on sale. Each bidder has a pair
of valuations \(v_i = (v^h_i, v^l_i) \), \(i \in N \), for the two successive units. \(v^h_i \geq v^l_i \) with probability
one. \(v_i \) is privately known and independently distributed across bidders according to a
continuously differentiable distribution function \(F_i(v^h_i, v^l_i) \) with support on
\(v_i \in [0, \bar{v}] \subset \mathbb{R}^2_+ \). Let \(F^h_i(v^h_i) \) and \(F^l_i(v^l_i) \) denote the two marginal distributions of \(F_i \). The information
of \(F_i \) and its two marginal distributions is common knowledge.

Bidders are asymmetric if \(F_i(v) \neq F_j(v) \) for some \(i \neq j \) and for a non-zero measure of
valuations \(v \). Therefore, the vector of bidders’ valuation distributions \(F = (F_1, \ldots, F_n) \) es-
entially describes the market environment; in particular, \(F_{-i} = (F_1, \ldots, F_{i-1}, F_{i+1}, \ldots, F_n) \)
gives a characterization of the market competition faced by bidder \(i \). As I want to un-
derstand how asymmetries affect bidders’ optimal bidding strategies, one way of doing
this is through a simple but important class of power distributions. Denote \(F_i(v_i) = \mathcal{P}(v_i)^{\alpha_i} \), where \(\mathcal{P} \) is a continuously differentiable distribution function with support on
\(v_i \in [0, \bar{v}] \subset \mathbb{R}^2_+ \), and \(\alpha_i \in \mathbb{R}_+ \). We call the vector of real numbers \(\alpha = (\alpha_1, \ldots, \alpha_n) \) a configuration of an auction market with \(F \), and denote \(\kappa_i = \sum_{j \in N \setminus i} \alpha_j \).

\(^6 \) Throughout, \(| \cdot | \) denotes the cardinality of a set.
Two popular simultaneous sealed-bid multi-unit auction formats are discussed in this paper, the uniform-price auction (UPA) and the discriminatory-price auction (DPA). In both auction formats, each bidder i submits a pair of two bids b^h_i and b^l_i for the first and second units of the good on sale respectively, $b^h_i \geq b^l_i$. Denote by $b^m_i(v_i)$, $m = h, l$, the bidding strategy of bidder i for the mth unit. The equilibrium concept used in this paper is the usual Bayes-Nash equilibrium, and is simply referred to as the equilibrium. Within the independent private values information framework, we know there exists at least one pure strategy equilibrium when bidders are \textit{ex ante asymmetric}.\footnote{Reny (1999) shows that a pure strategy equilibrium exists in a class of discontinuous games as long as no strategies create a discontinuous payoff decrease, which includes the asymmetric discriminatory-price auction case; Jackson and Swinkels (2005) further prove the existence of a monotone pure strategy equilibrium in a general class of auction games, which also includes the asymmetric uniform-price auction case.}

2.3 Bidding Behavior in Asymmetric Discriminatory-price Auctions

In a DPA, bidders pay the price they bid for each of the units they win. Write the bid b^m in the DPA as ϕ^m, $m = h, l$. From the perspective of a bidder i, there are $2(n-1)$ competing bids (with equal number of high bids and low bids, and may include zero bids), which are random variables that depend on her rivals’ bidding strategies and their own value distributions. Denote c^1 and c^2 as the highest and second highest bids from all of i’s rivals. Since the auction involves two units for sale, the distributions of c^1 and c^2 will be particularly relevant to our analysis. Let G_i^1 denote the distribution of the highest competing bid c^1, and G_i^2 the distribution of c^2.

When bidder i submits a pair of bids (ϕ^h_i, ϕ^l_i), her expected payoff is

$$\pi_i(\phi^h_i, \phi^l_i; v^h_i, v^l_i) = (v^h_i - \phi^h_i) G^2_i(\phi^h_i) + (v^l_i - \phi^l_i) G^1_i(\phi^l_i) \tag{2.1}$$

where $G^2_i(\phi^h_i)$ represents the probability that bidder i wins the first unit when her high bid ϕ^h_i is higher than the second highest competing bid c^2; she wins the second unit when her low bid ϕ^l_i is higher than the highest competing bid c^1 with probability $G^1_i(\phi^l_i)$.

Writing down the explicit equilibrium strategies in multi-unit auctions is notoriously difficult. Engelbrecht-Wiggans and Kahn (1998a) and Chakraborty (2006) have provided
some important equilibrium characterizations of the DPA via the first-order conditions. Within the independent (across bidders) and private value framework, their characterization results are applicable with my ex ante asymmetry assumption as long as each bidder’s equilibrium strategies can be derived from maximizing Equation (2.1) with respect to the high bid ϕ^h_i and low bid ϕ^l_i respectively. However, instead of the identical first-order conditions for all bidders, we will have a system of equations for each bidder given their G^1_i and G^2_i. I employ the following of their results as the premises for my analysis.

Lemma 2.1: In any equilibrium of the two-unit discriminatory-price auction with independent private values, $i \in N$

(i) $\pi_i(\phi^h_i, \phi^l_i; v^h_i, v^l_i)$ is differentiable for all relevant bids;

(ii) $\phi^m_i(v^h_i, v^l_i)$, $m = h, l$ is weakly increasing with v^m_i, and $0 \leq \phi^m_i \leq v^m_i$, $m = h, l$;

(iii) all equilibrium bids can be obtained by solving

$$
\max_{\phi^h_i} (v^h_i - \phi^h_i) G^2_i(\phi^h_i) \quad \text{and} \quad \max_{\phi^l_i} (v^l_i - \phi^l_i) G^1_i(\phi^l_i)
$$

Lemma 2.1 guarantees that all equilibrium strategies can be represented by the first-order conditions from the bidders’ expected payoff maximization problem; in particular, part (iii) states that for each bidder her bids for the two units can be decided separably.

One important analytic advantage from my value distribution assumption $\mathcal{F}(v)$ is the direct application of some standard stochastic dominance properties. I show that the marginal distribution of the highest competing bid G^1_i and the marginal distribution of the second highest competing bid G^2_i can both be ranked through the reverse hazard rate dominance for bidders with different κ.\(^8\)

Lemma 2.2: Given a configuration $(\alpha_1, \ldots, \alpha_n)$, if $\kappa_j \geq \kappa_i$, $i, j \in N$, then G^1_i (and G^2_i resp.) dominates G^1_j (and G^2_j resp.) in terms of the reverse hazard rate.

Proof. See Appendix 2.6.1. □

Recall that for each bidder i, I denote $\kappa_i = \sum_{j \in N \setminus i} \alpha_j$ as a measure of the aggregate competition from other bidders. Lemma 2.2 formalizes the intuition that when facing a

\(^8\) Given two distribution functions G_1 and G_2, G_1 dominates G_2 in terms of the reverse hazard rate if, for all $x \in [0, \bar{x}]$, $G_1(x) \geq G_2(x)$.
lower level of market competition, i.e., a smaller κ, a bidder is more likely to win when submitting the same bid.

Theorem 2.1: Given a configuration $(\alpha_1, \ldots, \alpha_n)$, if $\kappa_j \geq \kappa_i$, $i, j \in N$, then

(i) $\phi^h(v^h) \leq \phi^j(v^h)$, for all $v^h \in [0, \bar{v}]$;

(ii) $\phi^l(v^l) \leq \phi^j(v^l)$, for all $v^l \in [0, \bar{v}]$.

Proof. See Appendix 2.6.2. □

Part (i) (resp. part (ii)) of Theorem 2.1 implies that a bidder bids more aggressively with her high (resp. low) bid when she expects to face with stronger competitors in the market (i.e., a larger κ), regardless of her realized value of the other unit. Let a bidder facing with a smaller (resp. larger) κ as the stronger (resp. weaker) bidder, Theorem 2.1 reveals an analogous fashion of bid shading to the asymmetric first-price auction in which a weaker bidder bids more aggressively compared to her stronger competitors (Lebrun, 1999, Maskin and Riley, 2000).

As a bidder is more likely to further shade her high bid if she expects a modest level of market competition, Engelbrecht-Wiggans and Kahn (1998a) have shown that for each bidder, separating (i.e., $\phi^h \neq \phi^l$) and pooling (i.e., $\phi^h = \phi^l$) her two bids coexist with positive probability in equilibrium. In particular, there exists an iso-bid line in which a bidder is indifferent between pooling and separating her high and low bids made in equilibrium (see the dashed curve in Figure 2.1). Even though I cannot rule out the coexistence of separating and pooled bids in equilibrium, Theorem 2.1 implies that introducing bidders with heterogeneous value distributions alters the shape of the iso-bid line.

Remark 2.1: A bidder will increase (resp. decrease) the region of pooled bids when she expects less (resp. more) fierce competition from other bidders.

To see this, let (\hat{v}^h, \hat{v}^l) be a pair of values belonging to the iso-bid line, i.e., $\phi^h(\hat{v}^h, \hat{v}^l) = \phi^l(\hat{v}^h, \hat{v}^l)$, but $\phi^h(\hat{v}^h + \epsilon, \hat{v}^l) \neq \phi^l(\hat{v}^h + \epsilon, \hat{v}^l)$ and $\phi^h(\hat{v}^h, \hat{v}^l - \epsilon) \neq \phi^l(\hat{v}^h, \hat{v}^l - \epsilon)$. Equivalently, I can write $\phi = \hat{v}^h - BS^h = \hat{v}^l - BS^l$, where BS^m represents the level of bid shading, $m = h, l$. If the bidder faces less fierce competition from other bidders, i.e., $\hat{\kappa} \leq \kappa$, by
Theorem 2.1 we know that $BS^m(v^m) \geq BS^m(v^m)$, $v^m \in [0, \bar{v}]$, $m = h, l$. In addition, for a given v and a given κ, $BS^l(v) \leq BS^h(v)$ with probability one. To ensure \hat{v}^h remains on the iso-bid line, we need a higher valuation for the first unit $v^h > \hat{v}^h$. This implies a rightward shift of the iso-bid line. Similar arguments for \hat{v}^l suggest a downward shift of the iso-bid line.

2.4 Bidding Behavior in Asymmetric Uniform-price Auctions

In a UPA, all winning bidders pay the same price for each unit they win, where the market-clearing price is set at the highest losing bid. Let ϕ^1_i and ϕ^2_i be i’s bid for the first and second unit of the good, respectively. Similar to the DPA case, as each bidder is facing $2(n-1)$ competing bids, I denote by H_i the distribution from which the $2(n-1)$ competing bids are drawn, which reflects i’s belief of possible competition from a set of ex ante asymmetric competitors. Let c^1 and c^2 be the highest and second highest competing bids from all of i’s rivals. H^1_i denotes the distribution of the highest competing bid c^1 with density h^1_i, and H^2_i the distribution of c^2 with density h^2_i.

Given the strategies of all other bidders, the corresponding expected payoff of a bidder with value $(\hat{v}_i^h, \hat{v}_i^l)$ and bids (ϕ^1_i, ϕ^2_i) is
\[\pi_i(\phi_h^i, \phi_l^i; v_h^i, v_l^i) = (v_h^i + v_l^i)H_1^i(\phi_l^i) - 2 \int_{0}^{\phi_l^i} c^1 h_1^i(c) \, dc \]
\[+ v_h^i[H_2^i(\phi_h^i) - H_1^i(\phi_l^i)] - \phi_l^i[H_2^i(\phi_l^i) - H_1^i(\phi_l^i)] - \int_{\phi_l^i}^{\phi_h^i} c^2 h_2^i(c) \, dc \]
(2.3)

where the first line describes \(i \)'s expected payoff when she wins both units, i.e., \(i \)'s low bid \(\phi_l^i \) defeats all competing bids and win two units with probability \(H_1^i(\phi_l^i) \). The second line is the case in which she wins one unit with probability \(H_2^i(\phi_h^i) - H_1^i(\phi_l^i) \). \(H_2^i(\phi_l^i) - H_1^i(\phi_l^i) \) represents the probability that the market-clearing price is \(\phi_l^i \).

The difficulty of equilibrium characterization in the UPA comes not only from the lack of closed-form expressions of equilibrium strategies, as is the case with the DPA, but more importantly, from the possible discontinuities in bidding functions and the prevalent presence of equilibria multiplicity.\(^9\) Engelbrecht-Wiggans and Kahn (1998b) provide a relatively tractable method to characterize the equilibria of low bid \(\phi_l^i \) in undominated strategies. I follow their approach and extend their insights to incorporate the case with ex ante asymmetric bidders.

Let \(\gamma_i(v) \) be a weakly increasing function representing the low bid as a function of valuation, and write its inverse function as

\[\gamma_i^{-1}(\phi_l^i) \equiv \sup\{ x | \gamma_i(x) < \phi_l^i \} \]

which gives the highest possible value for bidding below \(\phi_l^i \). Engelbrecht-Wiggans and Kahn (1998b) have shown that the set of undominated strategies in the UPA with independent private values involves submitting their true valuations for the first unit \(\phi_h^i(v_h^i) = v_h^i \), and bidding no greater than their valuations for the second unit \(\phi_l^i(v_l^i) \leq v_l^i \), \(i \in N \). Replacing \(\phi_h^i \) by \(v_h^i \) in Equation (2.3), I can differentiate \(\pi_i(\phi_h^i, \phi_l^i; v_h^i, v_l^i) \) with respect to \(\phi_l^i \) when \(\phi_l^i > 0 \),

\(^9\)A series of examples in Engelbrecht-Wiggans and Kahn (1998b) clearly demonstrates the sensitivity of bidders’ strategies to the changes of their value distributions which includes bidding functions with discontinuities. Ausubel et al. (2014) illustrate an example with two bidders and two units in which bidders always bid truthfully on the first unit, however, submitting truthful bid or zero bid on the second unit are both in equilibrium if the other bidder chooses the same behavior.
\[
\frac{\partial \pi_i}{\partial \phi_i} = (\phi_i' - \phi_i) \phi_i^1(\phi_i') - [H^2(\phi_i') - H^2(\phi_i')]
\]

Equation (2.4) gives a necessary condition for \(i\)'s optimal nonzero low bids after equating it to zero. Recall that \(H^1\) and \(H^2\) are the respective distributions of the highest two competing bids \(c^1\) and \(c^2\) conditional on \(\kappa_i\). \(H^1(\phi_i')\) thus represents the probability of winning both units, which is the event that the realized values from all competing bidders are less than or equal to \(\phi_i'\). Therefore, I can write \(H^1(\phi_i') = \prod_{k \in N \setminus i} F^k_{\gamma_i}(\phi_i')\), and the corresponding probability density function \(h^1(\phi_i') = \sum_j f^j_{\gamma_i}(\phi_i') \prod_{k \neq i,j} F^k_{\gamma_i}(\phi_i')\).

Accordingly, \(H^2(\phi_i')\) is the probability that the second highest competing bid \(c^2\) is less than or equal to \(\phi_i'\), which is the union of the following disjoint events: (i) \(\phi_i'\) beats the highest competing bid \(c^1\); (ii) the high bids from \(n - 2\) bidders are less than or equal to \(\phi_i'\) and one is greater than \(\phi_i'\).

\[
H^2(\phi_i') = \prod_{j \in N \setminus i} F^k_{\gamma_i}(\phi_i') + \sum_{j \in N \setminus i} \prod_{k \neq j} F^k_{\gamma_i}(\phi_i') (F^j_{\gamma_i}(\phi_i') - F^j_{\gamma_i}(\phi_i'))
\]

where the summation ranges over all possible bidders. I can now rewrite the right-hand side of Equation (2.4) as

\[
\prod_{k \in N \setminus i,j} F^k_{\gamma_i}(\phi_i') \left[\sum_{j \neq i} f^j_{\gamma_i}(\phi_i') (\phi_i' - \phi_i) + F^j_{\gamma_i}(\phi_i') - F^j_{\gamma_i}(\phi_i')\right]
\]

Define

\[
\Gamma_i(\phi_i'; \phi_i') = \int_0^{\phi_i'} \prod_{k \in N \setminus i,j} F^k_{\gamma_i}(x) \left[\sum_{j \neq i} f^j_{\gamma_i}(x) (\phi_i' - x) + F^j_{\gamma_i}(x) - F^j_{\gamma_i}(x')\right] dx
\]

and

\[
C_i(\phi_i') = \operatorname{argmax}_{\phi} \Gamma_i(\phi_i'; \phi_i')
\]

\(C_i(\phi_i')\) is an increasing correspondence if \(v < \hat{v}, \phi_i \in C_i(v)\) and \(\hat{\phi} \in C_i(\hat{v})\), we have \(\phi \leq \hat{\phi}\). Engelbrecht-Wiggans and Kahn (1998b) have shown that if \(C_i(\phi_i')\) is an increasing correspondence and \(\phi_i(\phi_i')\) is a selection from \(C_i(\phi_i')\), then for each \(\phi_i' \in [0, \hat{\phi}]\), either \(\phi_i' = 0\) or \(\phi_i' \in C_i(\phi_i')\), where \(C_i\) is the set of solutions to
Γ(0; v) = \sum_{j\in\mathcal{N}} f_j^b(\phi_j^i)(v_j^i - \varphi_j^i) + F_j^b(\phi_j^i) - F_j^*(v_j^i) = 0 \tag{2.6}

i.e., i's optimal nonzero low bid must be an interior local maximum of \(\Gamma_i \). As each bidder follows her low bid strategy \(\gamma_i(v) \) in equilibrium which is weakly increasing by assumption, and obviously \(\varphi_j^i(0) = 0 \) and \(\varphi_j^i(\bar{v}) = \bar{v} \), we know there is a unique threshold value of the nonzero bid \(v_j^i < \bar{v} \), such that for all \(v_j^i \in [0, v_j^i) \), bidding zero for the second unit gives a higher expected payoff, i.e., \(\Gamma(0; v_j^i) > \Gamma(v_j^i; v_j^i) \); and for \(v_j^i \in (v_j^i, \bar{v}] \), \(\Gamma(0; v_j^i) < \Gamma(v_j^i; v_j^i) \). The arguments upon this point suffice the following result.

Proposition 2.1: For a given configuration \((\alpha_1, \ldots, \alpha_n)\), there is an equilibrium in the uniform-price auction with independent private values, such that

\[
(\varphi_j^i(v_j^i), \phi_j^i(v_j^i)) = \begin{cases}
(\alpha_j^i, 0) & \text{for } v_j^i \in [0, \bar{v}], v_j^i \in [0, v_j^i) \\
(\alpha_j^i, \phi_j^i) & \text{for } v_j^i \in [0, \bar{v}], v_j^i \in (v_j^i, \bar{v}]
\end{cases} \tag{2.7}
\]

where \(\alpha_j^i \in C_j^i(v_j^i) \), \(i = 1, \ldots, n \).

Proposition 2.1 characterizes the threshold value \(v_j^i \) for nonzero low bids, which also implies that the equilibrium bidding strategy for the second unit \(\varphi_j^i(v_j^i) \), \(i \in \mathcal{N} \), comes from the real-number solutions of Equation (2.6) when \(v_j^i \in (v_j^i, \bar{v}] \). Clearly, both \(v_j^i \) and \(\varphi_j^i(v_j^i) \) are identical to all bidders when the market is ex ante symmetric, i.e., \(F_i(v) = F_j(v) \), \(\forall i, j \in \mathcal{N} \). However, as indicated by Equation (2.6), bidders will have different equilibrium bidding strategies for the second unit once I introduce asymmetries through the market configuration \((\alpha_1, \ldots, \alpha_n)\), i.e., \(F_i(v) \neq F_j(v) \) and \(\alpha_i \neq \alpha_j \), \(\exists i, j \in \mathcal{N} \). The experimental results from Engelbrecht-Wiggans et al. (2006) imply that the threshold value for nonzero low bids \(v_j^i \) monotonically decreases (but does not converge to zero) with the increase in the number of homogeneous bidders in the market. Given the assumption of a fixed set of bidders, instead of investigating the effect of new entrants, I am interested in how \(v_j^i \) and \(\varphi_j^i \) will vary with our measure of the expected market competition \(\kappa_i \), where

\[\kappa_i = \sum_{j \in \mathcal{N} \setminus i} \alpha_j. \]
Example 2.1: Consider an auction market with two asymmetric bidders \{1, 2\} and two units of a homogeneous good. Let \((\alpha_1, \alpha_2)\) be its configuration, \(\alpha_1 \neq \alpha_2, \alpha_1 + \alpha_2 = 2, \alpha_i \in (0, 2), i = 1, 2\). Each of the two bidders independently draws their valuations for the two units from

\[
D_i(x) = \begin{cases}
0 & \text{for } x \leq 0 \\
\alpha_i x & \text{for } 0 \leq x \leq 1 \\
1 & \text{for } 1 \leq x
\end{cases}
\]

with densities \(d_i(x) = \alpha_i x^{\alpha_i-1}\). Therefore, \(F_i^h(x) = (D_i(x))^2\) and \(F_i^l(x) = 2D_i(x) - (D_i(x))^2\) give bidder \(i\)'s respective marginal distributions of the first and second unit.

Case (i). \(\alpha_1 \in (0, 1.5]. \) \((v_1^h, 0), i = 1, 2\) is the unique equilibrium, as there is no real-number solution to Equation (2.6).

Case (ii). \(\alpha_1 \in (1.5, 2). \) That is, bidder 1 becomes sufficiently stronger than her competitor. I can solve \(\varphi_i^l(v_i), i = 1, 2, \) via Equation (2.6), which gives

\[
2 \alpha_i (\varphi_i^l)^{2\alpha_i-1}(v_i^l - \varphi_i^l) + (\varphi_i^l)^{2\alpha_i} - (2(\varphi_i^l)^{\alpha_i} - (v_i^l)^{2\alpha_i}) = 0
\]

Figure 2.2 depicts the numerical calculations for bidder 1’s low bid functions when her competitor has \(\alpha_2 = 0\) and \(\alpha_2 = 0.4\). However, \((v_1^h, 0)\) is still the unique equilibrium for bidder 2. Clearly, bidder 1 bids more aggressively (i.e., reducing the difference between \(v_i^l\) and \(\varphi_i^l(v_i^l)\) for each \(v_i^l \in [0, 1]\), when her competitor turns to be even weaker (i.e., \(\alpha_2\) is decreased from 0.4 to 0.1).

For the threshold value of nonzero bid \(v^*\), recall that in Case (i) both of the two bidders submit zero bids on the second unit, which implies that when \(\alpha_1 \in (0, 1.5]\), the threshold value for nonzero bids \(v_i^*\) is at least 1 for \(v_i \in [0, 1], i = 1, 2\). When \(\alpha_1 > 1.5\), \(v_1^*\) reduces to 0 given the monotonic increasing bid function from \(\varphi_i^l(0) = 0\) to \(\varphi_i^l(1) = 1\) for bidder 1; however, \(v_2^*\) is still at least 1, as \((v_2^h, 0)\) is the only equilibrium for bidder 2.

11 When the two bidders are identical in terms of value distributions, i.e., \(\alpha_1 = \alpha_2 = 1\). \(D_i\) is essentially uniformly distributed. The examples in Ausubel et al. (2014) have shown that bidding truthfully on the first unit whereas submitting zero bid on the second unit is the only equilibrium when \(v_i^h > v_i^l\) with probability one. However, if the two bidders have constant values for the two units \(v_i^h = v_i^l, i = 1, 2\), we further encounter the problem of multiple equilibria such that both the single-unit bid equilibrium \((v_i^h, 0)\) and the truthful bidding equilibrium \((v_i, v_i)\) coexist with nonzero probability.
in both cases.

If I fix $\sum \alpha_i$ in a given configuration and treat α_i as a measure of i's own market position, a higher α_i thus implies a lower κ_i, i.e. a market with less aggressive competitors. Example 2.1 illustrates that when a bidder expects to possess a better market position with less intense competition from other bidders, she tends to lower her threshold value for nonzero low bids and submits higher bids for each realized value of the second unit.

In the rest of this section, I will show that such asymmetric bidding pattern is generally valid in the UPA providing that the valuation distributions of any two different bidders can be stochastically ordered.

First, I introduce the following lemma to describe the stochastic dominance relations of H^1_{i} the distribution of the highest competing bid and H^2_{i} the distribution of the second highest competing bid, conditional on κ the measure of market competition.

Lemma 2.3: Given a configuration $(\alpha_1, \ldots, \alpha_n)$, if $\kappa_j \geq \kappa_i$, $i,j \in N$, then H^1_j (resp. H^2_j) dominates H^1_i (resp. H^2_i) in terms of the hazard rate.
Similar to Lemma 2.2, Lemma 2.3 implies that a bidder expects to face higher (resp. lower) competing bids when she has a relatively weaker (resp. stronger) market position, i.e., a larger (resp. smaller) κ. To justify Lemma 2.3, I need to demonstrate that the stochastic dominance relations in bidders’ valuation distributions can be converted to their corresponding pairs of H_1 and H_2. From Proposition 2.1, we know that each bidder’s high bid is separable from her low bid; in addition, the independent private values assumption implies that a bidder’s two bids are independent from all her competing bids. Thus, for each bidder i, I can treat her $2(n - 1)$ competing bids as independently drawn from the distribution H_i. Because all bidders bid submit their true valuations for the high bids, and their low bids are either zero or come from the weakly increasing function $\gamma_i(v^l_i)$, $i \in N$, I can inverse each of her $2(n - 1)$ competing bids to its corresponding values which is drawn from either F_{hi} (for the first unit) or F_{lj} (for the second unit), $j \in N \setminus i$. The rest of the proof follows the arguments as that of Lemma 2.2, and is omitted.

I am now ready to present the following equilibrium characterizations of the UPA with ex ante asymmetric bidders.

Theorem 2.2: Given a configuration $(\alpha_1, \ldots, \alpha_n)$, if $\kappa_j \geq \kappa_i$, $i, j \in N$, then

1. $v^*_i \leq v^*_j$;
2. $\phi^*_l(v^l_i) \geq \phi^*_l(v^l_j)$, for all $v^l \in [0, \bar{v}]$.

Proof. See Appendix 2.6.3. □

In words, Theorem 2.2 says that when bidder i has a relatively strong market position with less aggressive bidders (i.e., a lower κ), she tends to bid more aggressively on the second unit in the UPA in term of both a lower threshold value for nonzero bids (Part (i)), and a higher nonzero low bid for each realized value of the second unit (Part (ii)). Ausubel et al. (2014) argue that although demand reduction in the UPA brings a superficially lower level of market demand, and in most cases, results in an unsatisfied market-clearing price for the seller, such welfare loss is nevertheless offset by allowing smaller market participants more room to survive, which may further encourage competition and innovation. Theorem 2.2, however, points to the opposite situation: stronger bidders are also more likely to submit higher bids in the UPA and seize a larger market...
share, whereas weaker bidders foresee their lower winning chances and are less likely to participate in the market, especially when participating requires non-negligible effort or monetary cost (e.g., research contests in the form of an all-pay auction). In addition, as I will discuss in Chapter 3, the asymmetric UPA also fosters bidders’ incentives to form larger coalitions, which is clearly not conducive to promoting market competition.

2.5 Conclusion

This paper presents new equilibrium characterizations for asymmetric discriminatory-price and uniform-price auctions with privately informed bidders. I argue that bidders’ distinct strategic behavior essentially comes from their diverse market positions (i.e., the winning probability and the probability of deciding the market-clearing price), which is measured by a configuration α of the differences in their valuation distributions. Instead of deriving a system of differential first-order conditions for the DPA and the UPA, which quickly becomes intractable given its multi-dimensional nature, I identify the comparative statics of equilibrium sets between two asymmetric bidders through the stochastic dominance relations in their valuation distributions.

Conceptually, we can treat multi-unit auctions as the simplest case of a multi-dimensional resource allocation problem. Thus, besides its practical relevance, having more comprehensive analyses of bidders’ behavior in markets with multiple objects is a nontrivial question in auction theory. Here, I mention a few possible directions for future research. First, even if providing a general result of revenue rankings among different multi-unit auction formats is difficult, comparing revenues among markets with different degrees of bidders’ asymmetry is still appealing, which may also contain fewer technical challenges. Second, I have thus far only considered bidders’ collusion incentives at the ex ante stage, which includes asymmetries that arise from mergers or joint bidding before bidders receive their private information. Analyzing bidders’ interim collusion behavior in single-item auctions has been widely discussed in the existing literature. However, since each coalition will face different incentive compatibility and participation constraints from its members given their realized valuations of the two units, characterizing bidders’ in-

12 See, for example, Cantillon (2008) who shows that a higher degree of asymmetries among bidders reduces the seller’s expected revenue in both first-price and second-price auctions.
term collusive strategies in a multi-unit auction even with the conventional independent private values setting appears to be a technically nontrivial exercise. Last, it would also be interesting to examine my results through experimental evidences.13

2.6 Appendix for Chapter 2

2.6.1 Proof of Lemma 2.2

I use some established stochastic ordering results from Karlin and Rinott (1980) to complete the proof. First, note that from the perspective of each bidder i, she is facing $2(n-1)$ bids (with equal number of high bids and low bids, and may include zero bids). For bidder i, let $\mathcal{F}_h(v)^\kappa_i$ denote the joint distribution of the $n-1$ distributions of marginal valuations for the first unit from her competitors, $\kappa_i = \sum_{j \in \mathcal{N} \setminus i} \alpha_j$. Recall that given $F_m^i(v) = \mathcal{F}_m(v)^{\alpha_i}$, if $\alpha_i \geq \alpha_j$, $i, j \in \mathcal{N}$, then $F_m^i(v)$ likelihood ratio dominates $F_j^m(v)$, $m = h, l$, $v \in [0, \bar{v}]$. Thus, we know that for bidder i, $\mathcal{F}_h(v)^{\kappa_i}$ likelihood ratio dominates $\mathcal{F}_h(v)^{\kappa_i'}$, if $\kappa_i \geq \kappa_i'$. Similarly, the joint distribution of the $n-1$ distributions of marginal valuations for the second unit from her competitors $\mathcal{F}_l(v)^{\kappa_i}$ likelihood ratio dominates $\mathcal{F}_l(v)^{\kappa_i'}$, if $\kappa_i \geq \kappa_i'$. Proposition 3.3 of Karlin and Rinott (1980) states that the joint density of two densities with likelihood ratio dominance relation also satisfies likelihood ratio dominance. Thus, the joint distribution of $\mathcal{F}_h(v)^{\kappa_i}$ and $\mathcal{F}_l(v)^{\kappa_i}$, $v \in [0, \bar{v}]$, $m = h, l$, also satisfies likelihood ratio dominance property given different κ_i.

For bidder i, let G_i denote the distribution from which her $2(n-1)$ competing bids are drawn. That is, G_i reflects i’s belief of possible competition from a set of ex ante asymmetric rivals. Part (iii) of Lemma 2.1 implies that for each bidder her high bid is separable from her low bid in the DPA; in addition, one’s two bids are also independent from the bids from other bidders given the independent private values assumption. Therefore, the $2(n-1)$ competing bids can be treated as independently drawn from G_i. Thus, I can inverse each competing bid back to its corresponding original valuation distribution. By Proposition 3.6 of Karlin and Rinott (1980) which shows that likelihood ratio dominance is preserved after a monotone transformation, we know that G_i also satisfies likelihood dominance.

13 To my knowledge, Engelbrecht-Wiggans et al. (2006) and Engelmann and Grimm (2009) are the two studies that are close to my setting.
ratio dominance property.

The corresponding likelihood ratio dominance property of the first and second order statistics of \(G_i, G^1_i \) and \(G^2_i \), follows Proposition 3.2 of Karlin and Rinott (1980). And we know that likelihood ratio dominance implies reverse hazard rate dominance. \(\square \)

2.6.2 Proof of Theorem 2.1

Part (i) \(\phi^h_i(v^h) \leq \phi^h_j(v^h) \), for all \(v^h \in [0, \bar{v}] \). I will argue by contradiction. First, let \(\lambda^h(\phi^h) \) denote the inverse of the high bid function, such that \(\lambda^h(\phi^h(v^h)) = v^h \). Thus, suppose that \(\phi^h_i(v^h) > \phi^h_j(v^h) \), for all \(v^h \in [0, \bar{v}] \), we should have \(\lambda^h_i(\phi^h) < \lambda^h_j(\phi^h) \).

Part (iii) of Lemma 2.2 implies that each bidder’s equilibrium high bids and low bids can be separably derived from the respective first-order conditions of Equation (2.2). That is,

\[
(v^h_i - \phi^h_i) g^2_i(\phi^h_i) = G^2_i(\phi^h_i) \quad \text{and} \quad (v^l_i - \phi^l_i) g^1_i(\phi^l_i) = G^1_i(\phi^l_i)
\]

which gives us

\[
\lambda^h_i(\phi^h_i) = \frac{G^2_i(\phi^h_i)}{g^2_i(\phi^h_i)} + \phi^h_i, \quad i \in N
\]

for the equilibrium high bids. By Lemma 2.2, we know that if \(\kappa_j \geq \kappa_i \), then \(\frac{\phi^h_i(\phi^h)}{g^2_i(\phi^h)} \geq \frac{\phi^h_j(\phi^h)}{g^2_i(\phi^h)} \), \(i, j \in N \). Thus,

\[
\lambda^h_i(\phi^h) = \phi^h + \frac{G^2_i(\phi^h)}{g^2_i(\phi^h)} \geq \frac{G^2_i(\phi^h)}{g^2_i(\phi^h)} + \phi^h = \lambda^h_j(\phi^h)
\]

which is a contradiction.

Part (ii) \(\phi^l_i(v^l) \leq \phi^l_j(v^l) \), for all \(v^l \in [0, \bar{v}] \). The proof follows the same arguments for part (i) with the corresponding first-order condition for the equilibrium low bids, and is thus omitted. \(\square \)

71

\(^{14}\) Here I follow the terminology and notation used in the auction literature, where the \(k \)th order statistics is the \(k \)th highest observation in a sequence of samples. In statistics, however, the \(k \)th order statistics is conventionally denoted as the \(k \)th smallest observation.
2.6.3 Proof of Theorem 2.2

Part (i) \(v_i^* \leq v_j^* \): First, by Proposition 2.1 and Equation (2.4), the threshold value for nonzero bid \(v_i^* \), \(i \in N \), should satisfy that for any \(\varphi_i^l > 0 \),

\[
(v_i^* - \varphi_i^l) h_i^1(\varphi_i^l) - [H_i^2(\varphi_i^l) - H_i^1(\varphi_i^l)] < 0 \quad \text{and} \quad (v_i^* - \varphi_i^l) h_i^1(\varphi_i^l) - [H_i^2(\varphi_i^l) - H_i^1(\varphi_i^l)] = 0
\]

where \(v_i^* < v_j^* \). Rearranging the equation gives us

\[
v_i^* - \varphi_i^l = \frac{1 - H_i(\varphi_i^l)}{h_i(\varphi_i^l)}
\]

Next, recall that I denote by \(H_i \) the distribution from which the \(2(n-1) \) competing bids for bidder \(i \) are drawn, by \(H_i^1 \) the distribution of the first (highest) order statistic, and by \(H_i^2 \) the distribution of the second (highest) order statistic. For a given nonzero bid \(\varphi_i^l \), we have

\[
H_i^1(\varphi_i^l) = H_i(\varphi_i^l)^{2(n-1)} \quad \text{and} \quad h_i^1(\varphi_i^l) = 2(n-1)H_i(\varphi_i^l)^{2(n-3)}h_i(\varphi_i^l)
\]

\[
H_i^2(\varphi_i^l) = H_i(\varphi_i^l)^{2(n-1)} + 2(n-1)H_i(\varphi_i^l)^{2(n-3)}(1 - H_i(\varphi_i^l))
\]

Thus,

\[
\frac{H_i^2(\varphi_i^l) - H_i^1(\varphi_i^l)}{h_i^1(\varphi_i^l)} = \frac{1 - H_i(\varphi_i^l)}{h_i(\varphi_i^l)}
\]

By Lemma 2.3, we know that if \(\kappa_j \geq \kappa_i \), then \(\frac{h_j(\varphi_i^l)}{H_j(\varphi_i^l)} \leq \frac{h_i(\varphi_i^l)}{H_i(\varphi_i^l)} \), \(i, j \in N, \varphi_i^l > 0 \). Thus,

\[
v_i^* = \varphi_i^l + \frac{1 - H_i(\varphi_i^l)}{h_i(\varphi_i^l)} \leq \frac{1 - H_j(\varphi_j^l)}{h_j(\varphi_j^l)} + \varphi_i^l = v_j^*
\]

as I need.

Part (ii) \(\varphi_i^l(v') \geq \varphi_j^l(v') \), for all \(v' \in [0, \bar{v}] \). Suppose by contradiction that \(\varphi_i^l(v') < \varphi_j^l(v') \), for all \(v' \in [0, \bar{v}] \). By Proposition 2.1, for all \(\varphi_i^l > 0 \), we should have \(\gamma_i^{-1}(\varphi_i^l) > \gamma_j^{-1}(\varphi_i^l) \), where \(\gamma_m^{-1}(\varphi_i^l), m = i, j \), gives bidder \(m \)'s highest possible value for bidding below
By Equation (2.4), we have the necessary first-order condition for \(i \)'s optimal nonzero low bids:

\[
(\gamma^{-1}_i(\varphi^j_l) - \varphi^j_l) h^1_i(\varphi^j_l) - [H^2_i(\varphi^j_l) - H^1_i(\varphi^j_l)] = 0, \quad i \in N
\]

By Lemma 2.3, for all \(\varphi^j > 0 \), we have

\[
\gamma^{-1}_i(\varphi^j_l) = \varphi^j + \frac{1 - H_i(\varphi^j_l)}{h_i(\varphi^j_l)} \leq \frac{1 - H_j(\varphi^j_l)}{h_j(\varphi^j_l)} + \varphi^j = \gamma^{-1}_j(\varphi^j_l)
\]

which is a contradiction. \(\square \)

Bibliography

73

3. EX ANTE COALITION IN MULTI-UNIT AUCTIONS

Yun Liu∗

Abstract: Following Chapter 2, this paper further examines bidders’ ex ante collusion incentives in a one-shot multi-unit auction game with incomplete information. I claim that the uniform-price auction (UPA) is more vulnerable to collusion than the discriminatory-price auction (DPA) in the sense that: 1) a bidder’s expected payoff is always lower from a larger coalition in a DPA; 2) for a class of all possible distributions, all coalitions are core-stable in the UPA, whereas only the grand coalition has a nonempty core in the DPA. At the policy level, these results offer new insights into the regulation of anti-competitive behavior in auction markets beyond the single-unit case.

JEL Classification: C70; D44; L40

Keywords: multi-unit auctions, ex ante asymmetry, collusion, partition function game.

3.1 Introduction

Following Chapter 2, this paper further investigates bidders’ collusion incentives in the uniform-price auction (UPA) and the discriminatory-price auction (DPA). I am interested in which of the two auction mechanisms is more likely to boost collusion incentives by investigating bidders’ ex ante formation of coalitions as bidding rings (Marshall et al.,∗

∗Department of Economics, Copenhagen Business School, Porcelænshaven 16A, DK-2000 Frederiksberg. Email: yliueco@gmail.com. I am deeply indebted to my supervisor Peter Bogetoft for his continuous support and guidance. I also thank Anette Boom for very helpful comments. Financial support from the Center for research in the Foundations of Electronic Markets (CFEM), supported by the Danish Council for Strategic Research, is gratefully acknowledged. All errors are mine.
1994, Waehrer, 1999, Bajari, 2001, Kim and Che, 2004, Biran and Forges, 2011). I begin the analysis from imposing an a priori given coalition structure upon all bidders, which partitions the set of bidders into separated groups before they receive their private information. Next, assume a preauction knockout (McAfee and McMillan, 1992) is run within each coalition before the grand auction. That is, only a representative bidder of each coalition will participate in the grand auction and bid accordingly; the rest members of each coalition submit irrelevant bids (or become inactive) in the grand auction.

Notice that even if bidders are ex ante symmetric, the presence of coalitions as bidding rings essentially introduces asymmetries between bidders who are members of a ring and those who are not, i.e., coalitions can be treated as prototypes of asymmetric bidders. As I have shown in Chapter 2, analyzing equilibrium behavior in multi-unit auctions becomes more problematic with asymmetric bidders. To circumvent possibly intractable technical issues, I simplify the analysis by assuming bidders within each ring are committed to truthfully communicate their value with other ring members. Each bidder, however, is allowed to switch the initial partition subset she belongs to before knowing her private value. Therefore, instead of analyzing bidders’ interim collusive strategies, this paper investigates which auction mechanism is more vulnerable to collusions at the ex ante stage by rewarding bidders for forming larger coalitions.

I first contrast bidders’ collusion incentives from the perspective of the expected per-member payoff. That is, because all bidders are identical before receiving their private values, each bidder will expect an equal portion of the total collusive gain from her coalition. A bidder’s ex ante collusive decision (i.e., staying in or leaving her current coalition), A bidding ring is composed of a group of bidders whom agree to collude together in order to gain higher surplus by depressing competition in the grand auction.

An alternative approach is to analyze the interim formation of bidding rings, which focuses on an ex ante given ring and explores optimal ways to organize the ring (Graham and Marshall, 1987, McAfee and McMillan, 1992, Marshall and Marx, 2007, Hendricks et al., 2008).

Such assumption is justified in cases where the auction markets contain both incumbents (i.e., bidding rings) and newcomers (i.e., individual bidders). For instance, in oil drilling (or mineral) rights auctions where newcomers (or small companies) only have blurred valuations of the goods, while joining a conglomerate (i.e., a ring) may help them receive a clearer valuation or reduce redundant overhead costs (e.g., machine tools, administration costs, logistics). Also, in government procurements, incumbents may have information advantages and consider to collude before the precise project specifications are published.

Marshall and Marx (2007) term such coalition mechanisms the bid submission mechanism. Biran and Forges (2011) further prove that the bid submission mechanism is ex ante incentive-compatible and budget-balanced in a general Bayesian game with independent private values. As their setting clearly include the multi-unit auction case, I expect a similar incentive-compatible ring mechanism also exist in the setting as I discussed here.
coalition before receiving her private value) will be based on the difference of her expected per-member payoff between the current coalition and feasible outside options. Theorem 3.1 (in Section 3.3.1) implies that the UPA is more vulnerable to collusion than the DPA as each bidder’s expected payoff is unanimously increasing (resp. decreasing) in the UPA (resp. DPA) with the size of the coalition she belongs to. However, higher expected per-member payoffs still cannot prevent bidders’ joint incentives to deviate from their current coalitions. Proposition 3.1 (in Section 3.3.2) further shows that regardless of the sizes of their current coalitions in the UPA, no subgroups of bidders would like to collectively deviate from their current coalition once it is formed; by contrast, except for the grand coalition, all bidders would prefer staying in a smaller coalition to their current coalitions in the DPA. These two results contribute to the literature by providing new evidences in the choice between the UPA and the DPA apart from comparing their revenue difference. It also offers new insights into the regulation of anti-competitive behavior in auction markets beyond the single-unit case.

3.2 Model

3.2.1 Preliminary Definitions

Consider an auction game with two indivisible and identical units of a good, and a set of risk neutral and payoff-maximizing bidders labeled by \(i, N = \{1, \ldots, n\}, |N| \geq 2 \). The seller’s valuation to keep the unsold units is zero, and all bidders bid for both units on sale. Each bidder has a privately known diminishing value pair \(v_i = (v^h_i, v^l_i) \) for the two successive units, \(v_i \in [0, \bar{v}] \subset \mathbb{R}^2 \), \(v^h_i \geq v^l_i \) with probability one.

Denote \(f(v_i) \) the joint distribution function of bidder \(i \)'s value pair \(v_i \). Let \(f \) be atomless, the density \(f \) exists and is positive for all \(v_i \in [0, \bar{v}]^2 \). Before knowing their private values, bidders are partitioned into a set of distinct subsets according to \(S \). All bidders belong to one and only one subset, no subset is empty, and the union of all subsets equals to \(N \). Both the partition structure \(S \) and the distribution function \(f \) are common knowledge.

Assume within each \(s \in S \), bidders agree to share the information of their private

5 Throughout, \(|\cdot|\) denotes the cardinality of a set.
valuation, and only the bidder with the highest realized value will submit nonzero bids in the grand auction. However, before knowing their private value, each bidder \(i \in s\) is allowed to switch the partition subset \(s \in S\) she belongs to. We call a bidder with at least one nonzero bid as an active bidder, and all others who bid zero on both units as inertia bidders.\(^6\) Denote the bidding strategy of bidder \(i\) for the \(m\)th unit, \(m = h, l\), as \(b_m^i(v_i)\). Each bidder \(i\) submits a pair of two bids \(b_h^i\) and \(b_l^i\) for the first and second units of the good respectively, \(b_h^i \geq b_l^i\). Let \(c^1\) and \(c^2\) be the highest and second highest competing bids from \(i\)'s rivals outside her own partition subset \(s\) respectively. The equilibrium concept used in this paper is the usual (pure) Bayes-Nash equilibrium.

Section 3.2.2 introduces the uniform-price auction (UPA) and the discriminatory-price auction (DPA), which are exclusively discussed in this paper. The setting of these two auction formats is exactly the same as in Chapter 2.

3.2.2 Two Formats of Multi-unit Auction

In a DPA, bidders pay the price they bid for each of the units they win. Write the bid \(b^m\) in the DPA as \(\phi^m\), \(m = h, l\). When bidder \(i\) submits a pair of bids \((\phi_h^i, \phi_l^i)\), her expected payoff is

\[
\pi_i(\phi_h^i, \phi_l^i; v_h^i, v_l^i) = (v_h^i - \phi_h^i) G_2^i(\phi_h^i) + (v_l^i - \phi_l^i) G_1^i(\phi_l^i) \tag{3.1}
\]

where \(G_1^i\) is the marginal distribution of the highest competing bid \(c^1\), and \(G_2^i\) is the marginal distribution of the second highest competing bid \(c^2\). Thus, \(G_2^i(\phi_h^i)\) represents the probability that bidder \(i\) wins the first unit when her high bid \(\phi_h^i\) is higher than the second highest competing bid \(c^2\); she wins the second unit when her low bid \(\phi_l^i\) is higher than the highest competing bid \(c^1\) with probability \(G_1^i(\phi_l^i)\).

In a UPA, all winning bidders pay the same price for each unit they win, where the market-clearing price is set at the highest losing bid. Write \(\varphi_h^i\) and \(\varphi_l^i\) as \(i\)'s bid for the first unit and second unit of the good respectively. Similar to the case of the DPA, let \(c^1\) and \(c^2\) be the highest and second highest bids from all of \(i\)'s rivals. Denote by \(H_1^i\) be

\[^6\] Note that a bidder is always the active bidder of her subset, if she belongs to a singleton subset (i.e., \(|s| = 1\)).
the marginal distribution of the highest competing bid c^1 with density h^1_i, and by H^2_i the
 marginal distribution of c^2 with density h^2_i. Given the strategies of all other bidders, the
 corresponding expected payoff of a bidder with value (v^h_i, v^l_i) and bids $(\varphi^h_i, \varphi^l_i)$ is

$$
\pi_i(\varphi^h_i, \varphi^l_i; v^h_i, v^l_i) = (v^h_i + v^l_i)H^1_i(\varphi^l_i) - 2 \int_{0}^{\varphi^l_i} c^1 h^1_i(c^1) \, dc^1
+ v^h_i[H^2_i(\varphi^l_i) - H^1_i(\varphi^l_i)] - v^l_i[H^2_i(\varphi^h_i) - H^1_i(\varphi^l_i)] - \int_{\varphi^l_i}^{\varphi^h_i} c^2 h^2_i(c^2) \, dc^2
$$

(3.2)

where the first line describes i’s expected payoff when she wins both units, i.e., i’s
 low bid φ^l_i defeats all competing bids and win two units with probability $H^1_i(\varphi^l_i)$. The
 second line is the case in which she wins one unit with probability $H^2_i(\varphi^l_i) - H^1_i(\varphi^l_i)$.
 $H^2_i(\varphi^l_i) - H^1_i(\varphi^l_i)$ represents the probability that the market-clearing price is φ^l_i.

3.3 Results

I first summarize and rephrase the multi-unit auction game through the following timeline.

- **Time 0:** Market is set up with: (i) two indivisible and identical units of a good; (ii) a
 non-strategic seller and $n \geq 2$ risk neutral and payoff-maximizing bidders; (iii) bidders
 have decreasing marginal value for the two units on sale; (iii) each bidder i has privately
 known diminishing marginal values $v_i = (v^h_i, v^l_i)$ for the two successive units, which are
 drawn from a commonly known distribution $F(v_i), i \in N$.

- **Time 1:** Before receiving their private values v for the good, a partition structure S
 is imposed on the set of bidders. Each partition subset contains $|s|$ bidders, $s \in S$.
 Bidders are allowed to switch the partition subsets they belong to before receiving their
 private values. Only the initial S is publicly observable.

- **Time 2:** After knowing v, bidders within each partition subset are committed to form
 a coalition. The coalition acts as a bidding ring. That is, for each ring, a representative
 bidder participates in the grand auction (organized by the seller) and bids according to
the highest valuation pair reported within the ring; all the other ring members submit irrelevant bids. Assume no strategic behavior within each ring.

- Time 3: The seller collects all bids and chooses the highest two bids for assignment. Payments are decided by the chosen auction mechanism (UPA or DPA).

Because both the initial partition \mathcal{S} and the value distribution \mathcal{F} are common knowledge, for a coalition $s \in \mathcal{S}$, $\mathcal{F}(v^*)$ essentially reflects the belief of competing bidders outside s.\footnote{With a slight abuse of notation, I use s to represent both a coalition set and its cardinality if no confusion arises.} Thus, even if bidders were ex ante symmetric within each coalition, the presence of coalitions of different sizes virtually introduces asymmetries among bidders. In addition to complicating bidders’ equilibrium behavior (as I have shown in Chapter 2), a higher degree of market asymmetries will inevitably reduce the expected revenue to the seller. From the perspective of the seller, exacerbating market asymmetries through forming larger coalitions should nevertheless be avoided.

In this paper, I evaluate the vulnerability to collusion from the perspective of the expected per-member payoff (in Section 3.3.1), and the core stability (in Section 3.3.2).

3.3.1 Expected Per-member Payoff

From the perspective of bidder i, her \textit{ex ante} expected payoff from staying in coalition s is

$$u_i = \frac{1}{|s|} \int_0^v \int_0^u \pi_s(b^*_h, b^*_l; v^*_h, v^*_l) \, dF_s(v^*_h, v^*_l)$$ \hspace{1cm} (3.3)

where $\pi_s(b^*_h, b^*_l; v^*_h, v^*_l)$ is the expected payoff of coalition s at the ex ante stage when the representative bidder of coalition s has value (v^*_h, v^*_l) with the corresponding pair of bids (b^*_h, b^*_l), and all other representative bidders of their respective coalitions follow their equilibrium bidding strategies. u_i is the \textit{expected per-member payoff}, which determines i’s decision to remain with or leave her current coalition group. Denote u_i^{UPA} and u_j^{UPA} the expected per-member payoff in a UPA and a DPA respectively.

Theorem 3.1: Let \mathcal{S} be a partition of a set of ex ante symmetric bidders \mathcal{N}, $|\mathcal{N}| \geq 2$, $i \in s$ and $j \in s'$, $s, s' \in \mathcal{S}$. If $|s| \geq |s'|$, then $u_i^{DPA} \leq u_j^{DPA}$ and $u_i^{UPA} \geq u_j^{UPA}$.\footnote{With a slight abuse of notation, I use s to represent both a coalition set and its cardinality if no confusion arises.}
Theorem 3.1 says that the expected per-member payoff is higher (resp. lower) when a bidder stays in a larger (resp. smaller) bidding coalition under the UPA (resp. DPA). In other words, the UPA encourages bidders to expand the size of their coalitions by absorbing those who belong to other smaller groups for the purpose of reducing the level of market competition. The DPA, however, reveals a different collusion mechanism in which bidders prefer to stay in a smaller coalition group rather than join a larger one. For example, in an auction market with three identical bidders, i.e., singleton coalitions, any two of the three bidders will intend to merge as a new coalition in a UPA, which gives them a higher level of ex ante expected payoff; in addition, the remaining singleton bidder also would like to join the larger coalition. By contrast, all three bidders prefer maintaining their current status to forming a larger coalition in a DPA. Therefore, the higher per-member payoffs from a smaller coalition in the DPA may further restrain the anti-competitive behavior in auction markets with heterogeneous participants.

In the next section, I further investigate bidders’ joint incentives to deviate from their current coalitions.

3.3.2 Core Stability

In the language of cooperative games, my setting can be considered as a partition form game (Thrall and Lucas, 1963), which reflects the ex ante commitments of bidding coalitions given the underlying partition structure. Bidders are committed to sharing their private valuation with other members in the same coalition, submitting bids according to their collusive agreements and receiving compensations afterwards (Marshall and Marx, 2007, Biran and Forges, 2011).

I first extend my notation of the group expected payoff π to represent the expected payoff of the coalition s in a given partition \mathcal{S} when all coalitions behave according to the equilibrium $\sigma(\mathcal{S})$ (Ray and Vohra, 1997).\footnote{In the case of multiple equilibria, I fix a mapping σ associating a coalitional equilibrium $\sigma(\mathcal{S})$ with every \mathcal{S}, which is plausible in the context of auctions in which bidders are allowed to select their strategies.}

$$\pi_s(s; \mathcal{S}) = E \left[\sum_{i \in s} \pi_i(\tilde{v}_i, \sigma(\mathcal{S})(\tilde{v})) \right]$$
where \(\pi_i \) is the share of \(i \)'s coalitional gains given \(\tilde{v} \), a random realization of \((v_i^0, v_i')\), and the associated coalitional equilibrium \(\sigma(S)(\tilde{v}) \), \(\tilde{v} = (\tilde{v}_k)_{k \in S} \). Notice that for the two extreme cases, (i) when \(|s| = 1\), i.e., the singleton coalition, \(\pi_s(i; S) \) is the expected payoff bidder \(i \) can obtain independently at the partition \(S \); (ii) when \(|s| = |N|\), i.e., the grand coalition, \(\pi_s(N, S) \) gives the Pareto optimal payoff of the \(S \).

Define the characteristic function of a coalition \(s \) as

\[
e^\ast_s(r) = \min_{s' \in P(s \setminus r)} \pi_s \left(r; (r, s', (s')_{s' \in S \setminus r})\right), \quad r \subseteq s
\]

where \(P(s \setminus r) \) is the set of all possible partitions of the remaining members in \(s \) without \(r \). Therefore, \(e^\ast_s(r) \) reflects the most pessimistic expectation of the subgroup \(r \) once they deviate from \(s \).\(^9\) A coalition \(s \) is core-stable (Biran and Forges, 2011), if

\[
\sum_{i \in r} \pi_s(i; S) \geq e^\ast_s(r), \quad \forall r \subseteq s
\]

That is, no subgroup \(r \subseteq s \) has the incentive to leave \(s \) together if no outside option would give \(r \) a higher possible coalitional gain than the sum of payoffs they can obtain from \(s \) independently.

Proposition 3.1: In an auction market satisfying the assumptions of Section 3.2, all coalitions are core-stable in the UPA, while only the grand coalition is core-stable in the DPA.

Proof. See Appendix 3.5.2. □

Proposition 3.1 further contrasts the vulnerability to collusion between the UPA and the DPA from a cooperative game perspective. It indicates that for any given coalition structure in the UPA, no subgroup members have incentives to jointly deviate from their current coalitions. By contrast, in the DPA, only the grand coalition which includes all bidders is able to provide a higher payoff to any possible subgroup members over their outside options. As the grand coalition is rarely observed in practice,\(^10\) Proposition 3.1

\(^9\) Here I implicitly assume the remaining members in \(s \) still form the complementary coalition and behave according to their corresponding equilibrium strategy in \(\sigma(S) \), even if the subgroup bidders in \(r \) secede.

\(^10\) Some possible explanations include the problem of interim commitment, the communication cost among coalition members, and the penalty and deterrence from antitrust regulations and competition laws.
further supports my argument that the UPA is more vulnerable to collusion than the DPA in auction markets with private information.

3.4 Conclusion

This paper considers bidders’ collusion incentives in a one-shot multi-unit auction game with incomplete information. I argue that the UPA is more vulnerable to collusion than the DPA in term of the expected per-member payoff and the core-stability at the ex ante stage. Even though I only consider a simplified and highly stylized market environment, these observations still offer some nontrivial insights to the competition authorities when explicit collusion is a major concern.

3.5 Appendix for Chapter 3

3.5.1 Proof of Theorem 3.1

(i) $u^\text{DPA}_i \leq u^\text{DPA}_j$. By part (iii) of Lemma 2.1 in Chapter 2, I know that all bids can be made as separate bids in the DPA. Together with Equation (3.1) I first rewrite Equation (3.3) for coalition s in a DPA as

$$u^\text{DPA}_i = \frac{1}{s} \int_0^\infty \int_0^\infty \pi_s(\phi^h_s, \phi^l_s; v^h, v^l) d\mathcal{F}(v^h, v^l)$$

$$= \int_0^\infty (v - \phi^l_s(v)) G^1_s(\phi^l_s(v)) \mathcal{F}(v)^{s-1} f(v) dv \quad (a)$$

$$+ \int_0^\infty (v - \phi^h_s(v)) G^2_s(\phi^h_s(v)) \mathcal{F}(v)^{s-1} f(v) dv \quad (b)$$

where part (a) is the expected per-member payoff when a representative bidder in s wins the second unit when her low bid beats the highest competing bidder outside s, and

\footnote{Another strand of literature studies the case of tacit collusions (i.e., no monetary compensation within a coalition) in infinitely repeated auctions with complete information. See, for example, Fabra (2003).}

83
part (b) is a representative bidder’s expected payoff when she wins the first unit with her high bid. I can write part (a) as

\[
\int_0^\theta (v - \phi_i'(v)) G^s_i(\phi_i(v)) \mathcal{F}^{s} (v)^{t-1} f(v) \, dv
\]

\[
= \int_0^\theta (v - \phi_i'(v)) \prod_{k \in S \setminus i', s'} p_k^s(\phi_i'(v)) \mathcal{F}^{k}(\lambda_k^s(\phi_i(v)))^s' \mathcal{F}^{s}(v)^{t-1} f(v) \, dv
\]

(3.4)

where \(p_k^s(\phi_i'(v)) \) is the probability that the high bid of a competing representative bidder outside \(s \) is below the low bid of the representative bidder of \(s \); and \(\lambda_k^s(\phi_i(v)) \) denotes the inverse of \(\phi_i^k \), such that \(\lambda_k^s(\phi_i(v)) = v \).

For part (b), the event that \(G^s_i(\phi_i^k) \) involves two components: \(\phi_i^k \) beats the highest competing bid outside \(s \) (which is the same in part (a)), and \(\phi_i^k \) is lower than one competing bid but higher than all the rest competing bids. Without loss of generality, let a bidder \(k' \) not in \(s' \) win the second unit.\(^{12}\) Part (b) can be written as

\[
\int_0^\theta (v - \phi_i^k(v)) A = \int_0^\theta (v - \phi_i^k(v)) A_1 + \int_0^\theta (v - \phi_i^k(v)) A_2 \quad (3.5)
\]

with

\[
A = G^s_i(\phi_i^k(v)) \mathcal{F}^{s}(v)^{t-1} f(v) \, dv
\]

\[
A_1 = \prod_{k \in S \setminus i, s'} p_k^s(\phi_i^k(v)) \mathcal{F}^{k}(\lambda_k^s(\phi_i(v)))^s' \mathcal{F}^{s}(v)^{t-1} f(v) \, dv
\]

\(^{12} \) If there are more than two coalition groups, we can always choose the comparison group \(s' \) who does not win the second unit. However, for markets with only two coalitions, Equation (3.5) becomes

\[
\int_0^\theta (v - \phi_i^k(v)) G^s_i(\phi_i(v)) \mathcal{F}^{s}(v)^{t-1} f(v) = \int_0^\theta (v - \phi_i^k(v)) \mathcal{F}^{k}(\lambda_k^s(\phi_i(v)))^s' \mathcal{F}^{s}(v)^{t-1} f(v) \, dv
\]

\[
+ \int_0^\theta (v - \phi_i^k(v)) [\mathcal{F}(\lambda_k^s(\phi_i(v)))^s'(1 - \mathcal{F}(\lambda_k^s(\phi_i(v)))^s')] \mathcal{F}^{s}(v)^{t-1} f(v) \, dv
\]

where \(\lambda_k^s \) denotes the inverse of \(\phi_i^k \). All the following arguments are still valid, I thus omit the details.
As I analyze bidders’ incentives to deviate from her current coalition in terms of the expected per-member payoff in UPA, I need to compare the payoff difference between a bidder i if she is in coalition s with another bidder j in s'. To make the comparison more clearly, I also write down the expected per-member payoff of coalition s'

$$A_2 = \left[\sum_{k \in S \setminus s, k' \in S \setminus s', k} p_k^h(\phi^h_s(v)) \left(1 - p_k^h(\phi^h_s(v)) \right) \mathcal{F}^h(\lambda^h_s(\phi^h_s(v)))^s \right] \mathcal{F}^h(v)^{s-1} f(v) dv$$

where part (a') as

$$\int_0^v (v - \phi^h_s(v)) G^h_s(\phi^h_s(v)) \mathcal{F}^h(v)^{s-1} f(v) dv$$

and part (b') as

$$\int_0^v (v - \phi^h_s(v)) B = \int_0^v (v - \phi^h_s(v)) B_1 + \int_0^v (v - \phi^h_s(v)) B_2$$

with
The second inequality comes from the fact that if the two representative bidders from coalition with fewer members.

For the last inequality, first replace \(\phi^h_b \) with \(\phi^l_b \) (i.e., change the inverse bid function \(\lambda^h_b(\phi^h) \) to \(\lambda^l_b(\phi^l) \)) in Equation (3.4) and (3.5). We can see that the only difference in
Equation (3.4) after substituting \((\phi^h_i, \phi^s_i)\) with \((\phi^0_i, \phi^1_i)\) comes from \(\mathcal{G}^h(\lambda^h_j(\phi^s_j(v)))\). Recall \(\phi^j(v^h, v^i) \leq \phi^j(v^h, v^i)\) from Theorem 2.1, with \(i \in s\) and \(j \in s'\), we have \(\mathcal{G}^h(\lambda^h_j(\phi^s_j(v))) \geq \mathcal{G}^h(\lambda^h_j(\phi^s_j(v)))\), for all \(v \in [0, v]\). Thus, \(i\)'s expected payoff from part (a) is higher when \(j\) bids according to \((\phi^h_i, \phi^s_i)\) instead of \((\phi^0_i, \phi^1_i)\). Apply similar arguments to Equation (3.5), we can see that \(i\)'s expected payoff from part (a) is also higher when \(j\) bids according to \((\phi^h_i, \phi^s_i)\) instead of \((\phi^0_i, \phi^1_i)\), which is given by \(\mathcal{G}^h(v) \geq \mathcal{G}^h(\lambda^h_j(\phi^s_j(v)))\), for all \(v \in [0, v]\).

(ii) \(u^{UPA}_j \geq u^{FPA}_j\). First, substitute \(v^h_i\) for \(\phi^h_j\) and simplify Equation (3.2) after integration by parts as

\[
\pi_s(\phi^s_j; v^h_i, v^h_i) = (v^h_i - \phi_j^s)H_1^s(\phi_j^s) + 2\int_{c_l}^{c_j} H_1^s(c) dc + \int_{c_f}^{c_h} H_2^s(c) dc^2 \quad (3.8)
\]

where \(\pi_s\) is the expected payoff of coalition \(s\). As in Section 3.3, I abuse notation by using \(s\) to represent both a set of bidders and its cardinality, if no confusion arises. By Proposition 2.1 of Chapter 2, we know there is threshold value \(v^*\) of nonzero low bid. Substitute Equation (3.8) into Equation (3.3) and organize, we can write the expected per-member payoff in a UPA as

\[
u_j^{UPA} = \frac{1}{|s|} \int_{v^h_i}^{v^h_i} d\mathcal{G}^j(y)^* \int_{y}^{v^h_i} d\mathcal{G}^h(x)^* \int_{0}^{v^h_i} H_1^s(c) dc + \frac{1}{|s|} \int_{v^h_i}^{v^h_i} d\mathcal{G}^j(y)^* \int_{0}^{v^h_i} \pi_s(\phi^s_j; x, y) d\mathcal{G}^h(x)^* \\
= \int_{v^h_i}^{v^h_i} \left[\int_{v^h_i}^{v^h_i} \mathcal{G}^h(x)^* \int_{0}^{v^h_i} H_1^s(c) dc dx \right] \mathcal{G}^j(y)^* \\
+ \int_{v^h_i}^{v^h_i} \mathcal{G}^j(y)^* \int_{0}^{v^h_i} d\mathcal{G}^h(x)^* \left[(y - \phi^s_j(y))H_1^s(\phi^s_j(y)) + 2\int_{\phi^s_j(y)}^{c_j} H_1^s(c) dc \right] dy \\
+ \int_{v^h_i}^{v^h_i} \mathcal{G}^j(y)^* \int_{v^h_i}^{v^h_i} H_2^s(c) dc \] \quad (3.9)

where the second line is the case when \(v^h_i\) is lower than \(v^*\), that is, the coalition \(s\) wins one unit when \(v^h_i\) is greater than the second highest competing bid \(c^2\). \(c^2\) is distributed according to \(H_2^s\). \(\mathcal{G}^h(v)^*\) and \(\mathcal{G}^j(v)^*\) are the distributions of marginal valuations for the first unit and the second unit of the representative bidder of \(s\). The last two lines represent the expected per-member payoff when \(v^h_i\) is greater than the threshold of nonzero low bid.

Similar to the DPA case, I compare the payoff difference between a bidder \(i\) in the coalition

87
is equivalent to a smaller notation to allow bidder in coalition \(u \) and a bidder following conditions \(H_{\bar{v}} = 1 \).

The first inequality follows because \(\bar{v} \geq v^* \) is the optimal threshold of nonzero low bid for coalition \(s' \). Extend my notation to allow \(u^{UPA}(\varphi_{v^*}; a; b) = v^*, v^* \) and \(b = s, s' \), which represents the change of \(u \) with the nonzero bid threshold \((v^* \) and \(v^* \)) and the coalition group \((s \) and \(s') \). To show

\[
u_i(\varphi_{v^*}, v^*; s)^{UPA} \geq u_j^{UPA}(\varphi_{v^*}, v^*; s'),\]

when \(|s| \geq |s'| \), \(i \in s \) and \(j \in s' \), we can validate the following conditions

\[
u_i^{UPA}(\varphi_{v^*}, v^*; s) \geq u_i^{UPA}(\varphi_{v^*}, v^*; s) \geq u_j^{UPA}(\varphi_{v^*}, v^*; s')\]

The first inequality follows because \(\varphi_{v^*} \) is the equilibrium bid for the representative bidder in \(s \) with \((v^*, v^*) \), and \(v^* \) is the corresponding optimal threshold of nonzero low bid. \(\varphi_{v^*} \) and \(v^* \) should be at least as good as bidding some alternative \(\varphi_{v^*} \) and \(v^* \) in coalition \(s \). For the second inequality, since given a fix number of bidders \(N \) a larger \(s \) is equivalent to a smaller \(\kappa_s \), by Lemma 2.3 of Chapter 2 I know that if \(|s| \geq |s'| \) then \(H_{\bar{v}} \) (resp. \(H_{\bar{v}}^2 \)) dominates \(H_{\bar{v}}^1 \) (resp. \(H_{\bar{v}}^2 \)) in terms of the hazard rate, which implies the first-order stochastic dominance \(H_{\bar{v}}^m(x) \geq H_{\bar{v}}^n(x), m = 1, 2 \). Replace \(\varphi_{v^*} \) and \(v^* \) in Equation (3.9) with \(\varphi_{v^*} \) and \(v^* \) respectively. Comparing each item in Equation (3.9) with its corresponding item in Equation (3.10), I can see that bidding strategy \(\varphi_{v^*}(v^*, v^*) \) will generate higher expected payoff given a smaller number of competing bidders for each \(v^*, v^* \in [0, \bar{v}] \), which validates the second inequality. \(\square \)
3.5.2 Proof of Proposition 3.1

(UPA:) Since all bidders are ex ante symmetric within each coalition, to ensure that no subgroup would like to leave its current coalition, I only need to verify that \(\pi_{\sigma}(s; S) \geq \pi_{\sigma}(s'; S) \), for all \(s' \subseteq s \). Recall Theorem 3.1, I have \(u_{i}^{UPA} = \pi_{\sigma}(s; S) \), \(i \in s \), and \(u_{i}^{UPA} \geq u_{j}^{UPA} \), \(i \in s, j \in s' \) and \(s' \subseteq s \). The grand coalition case simply follows when setting \(|s| = |N| \).

(DPA:) Also from Theorem 3.1, I have \(u_{i}^{DPA} \leq u_{j}^{DPA} \), \(i \in s, j \in s' \) and \(s' \subseteq s \), which completes the statement that all partial coalitions are instable in the DPA. To show the grand coalition is core-stable, I need to verify that \(\pi_{\sigma}(N; S) \geq \pi_{\sigma}(s; S) \), for all \(s \subseteq N \). First, because the grand coalition always offers the Pareto optimal payoff, I know that

\[
\pi_{\sigma}(N; S) \geq \pi_{\sigma}(s; S) + \sum_{i \in N \setminus s} \pi_{\sigma}(i; S)
\]

Also, Theorem 3.1 implies that

\[
\pi_{\sigma}(i; S) \geq \frac{\pi_{\sigma}(s; S) - \sum_{i \in N \setminus s} \pi_{\sigma}(i; S)}{|s|}
\]

where \(\pi_{\sigma}(i; S) \) is \(i \)'s payoff when forming the singleton coalition and \(2 \leq |s| \leq |N| \). Combing the above two inequalities validates \(\pi_{\sigma}(N; S) \geq \pi_{\sigma}(s; S) \), as I need. \(\square \)

Bibliography

4. STABLE COALITION IN MULTI-ITEM AUCTIONS

Yun Liu

Abstract: This paper illustrates the coalition formation processes in the Ausubel’s clinching auction. Compared with the commonly used simultaneous sealed-bid auctions in markets with multiple objectives (e.g., the uniform-price auction and the discriminatory-price auction), the clinching auction offers an open ascending-bid alternative with a clear improvement in allocation efficiency while maintaining simplicity to perform in practice. I first show how vulnerable to collusion the clinching auction is, in the sense that it always has a non-empty core. I further argue that a non-bossiness condition is crucial to such vulnerability, and briefly discuss the intrinsic tension among efficiency, truthfulness, and non-bossiness in auction mechanisms.

JEL Classification: C78; I20

Keywords: multi-item auction, group strategy-proofness, core, non-bossiness.

4.1 Introduction

Market design is an emerging field in the past few decades with wide practical successes.¹ One key criterion of a good design is that players should have incentive to reveal their

¹ Department of Economics, Copenhagen Business School, Porcelænshaven 16A, DK-2000 Frederiksberg. Email: yliueco@gmail.com. I am deeply indebted to my supervisor Peter Bogetoft for his continuous support and guidance. I thank Anette Boon, Gagan Ghosh and Lars Peter Østerdal for very helpful comments. Financial support from the Center for research in the Foundations of Electronic Markets (CFEM), supported by the Danish Council for Strategic Research, is gratefully acknowledged. All errors are mine.

¹ For example, governments use open market auctions to allocate radio spectrum, timber, electricity, and natural gas involving hundreds of billions of dollars worldwide (Milgrom, 2004). In matching, noticeable applications include entry level labor market, house allocation, school choice, organ donation and exchange among others (Roth and Sotomayor, 1990; Roth, 2008).
true valuations. An assumption made in most literature in the area of efficient mechanism design, dating back to the Vickrey-Clarke-Groves (VCG) mechanism, is that selfish players do not collude with each other. However, even if a cautious design can ensure truthful bidding(s) from each individual bidder, it may still be ineffective in preventing their coalitional behavior, i.e., several players may agree to misreport their valuations in a coordinated way and split the gains from such manipulation.

Although the existing literature of collusion in auctions (and other pricing mechanisms) is far from rare, to my knowledge, not many well-established results have directly addressed coalitional behavior in auctions from the cooperative game aspect. The primary motive of this paper is to explore whether colluders can cooperatively facilitate a feasible revenue division scheme among themselves in auction markets with multiple objects.

At the current stage, I do not intend to propose a new multi-item auction format, but rather establishing my analysis based on the clinching auction (Ausubel, 2004) which essentially replicates the allocation of VCG mechanism in an ascending auction format with a relatively simple payment rule. I consider an auction game with multiple objects, and bidders with complete information. Bidders may collude with each other and jointly share the coalitional gains; in addition, transfers are not forbidden among colluders. I employ the conventional core notion as the solution concept, which characterizes the set of feasible division of coalition gains among the colluders.

My first result (Proposition 4.1) shows that the core is always non-empty in this game, i.e., all colluders perceive higher returns from staying in their current coalitions compared to all other alternatives. Under a mild super-additive assumption of the coalition gains, the grand coalition containing all bidders will eventually be formed in equilibrium regardless of the former divisions of sub-coalition groups. Thus, although the clinching auction

2 Some exceptions include Ausubel and Baranov (2010), Bachrach (2010), Biran and Forges (2011), among others.

3 Notice that different from the multi-unit auctions with more than one unit of a homogeneous good on sale, the items are not necessarily identical to each other in multi-item auctions. Some prominent real-life examples include selling advertisement slots for search engines, FCC spectrum auctions, among others.

4 Although at first glance it may seem as a mere technical simplification by allowing transfers among colluders, detecting the concealed reciprocal agreements is nevertheless difficult in practice. Also, for those bidders who are unlikely to win in the grand auction, participating in a pre-auction collusion scheme will at least grant them the opportunity to receive compensation from the coalition.

5 Super-additivity implies that the joint gain of two merged coalition groups should be no less than
guarantees efficient allocations as the VCG auction, caution should be exercised when applying it in markets where secret coalitions are highly suspicious.

I then explore the source of collusive incentives in auction games. A common collusion strategy is to cooperate reports among colluders (as I have discussed in Chapter 3), which will clearly mitigate the intensity of rivalry among bidders and eventually shift more surplus towards the side of bidders. The seller apparently wants to detect and deter possible coalitions through such joint manipulations of reports. Analogous to the strategy-proofness condition which requires truthful reporting from each individual bidder, I introduce the group strategy-proofness condition to address bidders’ joint incentives of misreporting.

Observation 1 indicates that an auction mechanism is group strategy-proof, if and only if it is non-bossy (Satterthwaite and Sonnenschein, 1981). One major challenge regarding the design of auction mechanisms satisfying the group strategy-proofness condition is the large number of extra incentive-compatibility constraints after introducing it into the seller’s optimization problem. Given the relatively simple expression of the non-bossiness condition, Observation 1 may point out an alternative approach regarding the design of collusion-proofness mechanisms (i.e., mechanisms satisfying the group strategy-proofness condition) (Che and Kim, 2006, Pavlov, 2008, Che and Kim, 2009). Last, I briefly discuss the intrinsic tension among efficiency, truthfulness, and non-bossiness in auction mechanisms (Observation 2).

The rest of the paper proceeds as follows. Section 4.2 sets up the model and illustrates the Ausubel’s clinching auction. Section 4.3 studies bidders’ collusion incentives in the clinching auction. Section 4.4 further investigates the source of such vulnerability to collusion. Section 4.5 concludes the paper. Appendix 4.6 states the proof of Proposition

\[v(A + B) \geq v(A) + v(B) \]

Also, as the clinching auction always generates the same allocation outcome as the VCG auction does in a given market, it is plausible to suspect that other variants of the VCG mechanism in auction markets may also be vulnerable to similar coalitional schemes (Ausubel and Milgrom, 2006).

An auction mechanism is group strategy-proof if no subgroup of bidders can jointly manipulate their reports so that all of them weakly benefit from this manipulation, while at least one bidder in the subgroup strictly benefits.

The non-bossiness condition requires if a change of one’s reported preference does not affect her own utility (i.e., the allocation and her payment to the mechanism), such change should not affect others’ utilities.

For example, in an auction game with \(n \) ex ante symmetric bidders, the conventional strategy-proofness condition only requires one incentive-compatibility constraint. However, satisfying the group strategy-proofness condition will demand \((n - 1)\) ex ante incentive-compatibility constraints, and \(2^{n-1}\) constraints at the interim stage.

93
4.1.

4.2 Model

4.2.1 Preliminary definitions

Consider a multi-item auction markets with \(X \) heterogeneous items and \(|N|\) risk neutral and payoff-maximizing bidders. \(N = \{1, \ldots, n\} \) and \(N_i \) is the set of all the players except \(i \). The seller’s valuation to keep unsold items is zero, and he needs to choose an auction mechanism for allocating the items and collecting payments from bidders. Let \(x \) be the vector of allocations which specifies the amount of items each bidder gets, and \(p \) be the vector of bidders’ payments. Each bidder \(i \) has a type \(\theta_i \) representing the vector of her preferences over \(X \). She can choose to report \(\theta'_i = s_i(\theta_i) \), where \(s_i \) represents her strategy. Denote \(u_i(x_i, \theta_i) \) as bidder \(i \)’s valuation over her own type \(\theta_i \) and her allocation outcome \(x_i \) chosen by the mechanism. Bidders have quasi-linear utility functions \(\mu_i = u_i(x_i, \theta_i) - p_i \), where \(p_i \) is her payment to the mechanism if she receives \(x_i \) amount of the items. Denote the marginal value of the \(l \)’th item to player \(i \) as \(m_i(l) = u_i(l) - u_i(l-1) \). Assume the marginal value of each additional items is non-increasing, \(m_i(l) \geq m_i(l+1) \).

A cooperative game \((N, v)\) is composed of a set of players \(N \), and a characteristic function \(v : 2^N \rightarrow \mathbb{R}_+ \) that indicates the total payoff these players can achieve together. A cooperative game is monotonic if for all coalitions \(C' \subseteq C \), \(v(C') \leq v(C) \), and is convex when for all coalitions \(C', C \subseteq N \) I have \(v(C') + v(C) \leq v(C' \cup C) = v(C' \cap C) \). The characteristic function only gives the total gains a coalition can achieve, but it does not define how these gains are distributed among its members. An imputation \((\eta_1, \ldots, \eta_i)_{i \in C}\) is a division of coalition gains among \(|C|\) colluders, where \(\eta_i \) is the payoff of \(i \), and \(\eta(C) = \sum_{i \in C} \eta_i \). The core of a cooperative game \((N, v)\) is a set of payoff vectors:

\[
\text{Core}(N, v) = \{ y \in \mathbb{R}^N : \sum_{i \in N} \eta_i = v(N), \sum_{i \in S} \eta_i \geq v(S), \forall S \subseteq N \}.
\]

In words, the core is the set of feasible imputations (i.e., \(\sum_{i \in N} \eta_i = v(N) \)) which promises no coalition has a joint payoff (i.e., \(v(S) \)) greater than the sum of its members’ payoffs (i.e., \(\sum_{i \in S} \eta_i \)).

94
4.2.2 The Ausubel’s mult-item clinching auction

In the Ausubel’s clinching auction, a price parameter gradually increases, and bidders keep decreasing their (discrete) demands for items with the price parameter. For bidder i, whenever the combined market demand from other bidders is strictly below the market supply, she can “clinch” one item at the current price. Therefore, each bidder’s payment is the sum of the price parameters for each item she clinched throughout the auction process.

Formally, the auction keeps: i) an item counter for the number of items x_i bidder i has clinched, and a payment counter for these items p_i; ii) a global price parameter β; and iii) a global counter for the number of remaining items r, $r = X - \sum_{i \in N} x_i$. β keeps ascending as long as the total market demand $\sum_{i \in N} D_i(\beta)$ is larger than the total remaining supply r. If at some β the remaining supply r is larger than the residual demand $D_{-i}(\beta)$, $D_{-i}(\beta) = \sum_{j \in N \setminus i} D_j$, the mechanism allocates z item(s) to bidder i at price β, $z = r - D_{-i}(\beta)$, and records the current price parameter β times the number of clinched item(s) z to i’s payment counter p_i. The mechanism updates its parameters as follows: $x_i \leftarrow x_i + z$, $p_i \leftarrow p_i + \beta \cdot z$, $r \leftarrow r - z$. The clinching auction mechanism can be summarized as the following algorithm:

Algorithm 1. Ausubel’s clinching auction

1. Initialization: $x_i \leftarrow 0$, $p_i \leftarrow 0$, $\beta \leftarrow 0$, $r \leftarrow X$.

2. When $\sum_{i \in N} D_i(\beta) > r$:
 (a) If there exists a bidder i such that $D_{-i}(\beta) < r$, then allocate $z = r - D_{-i}(\beta)$ items to bidder i with payment $\beta \cdot z$. Update all running variables as $x_i \leftarrow x_i + z$, $p_i \leftarrow p_i + \beta \cdot z$, $r \leftarrow r - z$, and repeat.
 (b) Otherwise, increase β, recompute the demands in Step (2.a.), and repeat.

3. When $\sum_{i \in N} D_i(\beta) = r$, allocate to each bidder his demand at β, and terminate.

After the termination, if $x_i > 0$, bidders pay the mechanism according to their payment counters p_i.
4.3 Vulnerability to Collusion

The Ausubel’s design of multi-item auctions essentially replicates the allocations of the VCG mechanism in an ascending auction format, which guarantees truthful reports from each individual bidder, but with a relatively simple payment rule. However, like the VCG auction mechanism, it also suffers bidders’ joint manipulations of their reports. I use the following example to illustrate how bidders’ coalitional strategies can trim down the seller’s revenue:

Example 4.1: (U.S. Nationwide Narrowband Auction) There are 5 identical licenses auctioned among 5 bidders. Each bidder is limited to bidding at most 3 licenses. Their preferences are:

<table>
<thead>
<tr>
<th>utility</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>123</td>
<td>75</td>
<td>125</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>second</td>
<td>113</td>
<td>5</td>
<td>125</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>third</td>
<td>103</td>
<td>3</td>
<td>49</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

(Case 1: no collusion) When no collusion is facilitated, the first license is “clinched” when the global price parameter β raises to 65, where the residual demand for bidder a is $D_{-a}(65) = 4$. Similarly, when $b = 75$, $D_{-a}(75) = 3$, and $D_{-a}(75) = 4$. That is, bidder a has clinched two items at price 65 and 75 respectively; meanwhile bidder c also clinches 1 units at 75. Continue the same fashion, when $b = 85$, the market clears ($\sum_{i \in N} D_i(\beta) = r$), bidder a and c win the rest two units and pay 85 for each. The total payment for a is 65+75+85, and 75+85 for c.

<table>
<thead>
<tr>
<th>demand price</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
(Case 2: a partial collusion) Consider a partial coalition with bidder \(a\), \(c\) and \(d\), in which bidder \(a\) and \(c\) still report their true valuations as in Case 1, and bidder \(d\) agrees to report \(\theta_d' = (65, 65, 7)\).

<table>
<thead>
<tr>
<th>utility license</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>123</td>
<td>75</td>
<td>125</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>second</td>
<td>113</td>
<td>5</td>
<td>125</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>third</td>
<td>103</td>
<td>3</td>
<td>49</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

The allocations are the same as in Case 1, where bidder \(a\) receives three licenses and bidder \(c\) gets the other two licenses. However, the mechanism collects fewer payments from bidder \(a\) and bidder \(c\) compared with the situation when there is no collusion. That is, bidder \(a\) pays 65 + 65 + 75 (v.s. 65 + 65 + 85 in Case 1), and bidder \(c\) pays 75 + 75 (v.s. 75 + 85 in Case 1).

As monetary compensation is not forbidden (or simply cannot be observed) within the coalition, bidder \(d\) should be at least weakly better-off from manipulating her reports, even though she still does not win any item.

(Case 3: the grand coalition) Since bidder \(e\) does not win in any case, applying similar arguments as in Case 2, we can easily see that all bidders have incentives to collude together. Thus, bidder \(a\) and \(c\) can suppress bidding from \(b\) and \(d\) as \(\theta_a' = \theta_c' = (0, 0, 0)\), and report \(\theta_a' = (0 + \varepsilon, 0, 0)\) and \(\theta_c' = (1, 0 + \varepsilon, 0)\) accordingly. Allocations do not change but now the seller makes (almost) zero revenue. In the next section, I will show that no subgroup bidders have incentives to deviate from the grand coalition once it is formed.
4.3.1 Non-empty core

I first present the formal definition of the collusion game. Denote the allocations under truthful report as \(x^* = (x^*_1, \ldots, x^*_n) \), and payments \(p^* = (p^*_1, \ldots, p^*_n) \). Let \(C \subseteq N \) be a subgroup of bidders who may decide to collude. The utility of a coalition \(C \) when they bid truthfully is \(\mu^*(C) = \sum_{i \in C} \mu_i = \sum_{i \in C} u_i(x^*_i) - p^*_i \).

If bidders in \(C \) decide to manipulate their reports, they can form a simple coalition such that it is able to reduce the total payments from its members but keep the same allocations as from truthful reporting, i.e., \(p'_i \leq p^*_i \) and \(x'_i = x^*_i \). The aggregate utility of the coalition is \(\mu'(C) = \sum_{i \in C} u_i(x^*_i) - p'_i \).

Definition 4.1: In an auction market satisfying the assumptions of Section 4.2.1, a collusion game \((C, v(C))\) is a certain subset of the grand coalition \((N, v(N))\), \(C \subseteq N\), where \(v(C) = \mu'(C) \).

I now turn to analyzing how the coalition can share its gains among the members. As monetary compensation within a coalition is not explicitly prohibited, the coalition members can negotiate and redistribute the coalitional gains among themselves regardless of the initial allocations of the items. A stable coalition can thus be formed in a way that guarantees no bickering among the colluders, i.e., no subgroup colluders perceive higher returns from any outside alternatives than their share of the current coalitional gains.

Proposition 4.1: The collusion game always has a non-empty core in the Ausubel’s clinching auction.

Proof. See Appendix 4.6. \(\square \)

Proposition 4.1 indicates that even though an auction mechanism (e.g., the Ausubel’s clinching auction) is capable of preventing manipulation from each individual bidder and produces efficient allocation outcomes, bidders can still jointly affect the mechanism and make superficially low payments to the seller (e.g., the grand coalition case in Example 4.1).

Let \(\theta_C \) be the vector of reports from each coalition member in \(C \), and \(\mu'_i(\theta_C; C) \) be \(i \)'s utility when her coalition jointly reports some \(\theta_C \) other than their true types \(\theta^*_C \).
Analogous to the strategy-proofness condition targeting individual’s strategic reporting, I introduce the following condition to address players’ joint incentives of manipulation.

Definition 4.2: An auction mechanism is group strategy-proof, if \(\forall \theta \in \Theta, \not\exists C \subseteq N, \) s.t. (i) \(\mu'_i(\theta_C; C) \geq \mu^*_i(\theta^*_C; C), \forall i \in C, \) and (ii) \(\mu'_j(\theta_C; C) > \mu^*_j(\theta^*_C; C), \exists j \in C. \)

That is, an auction mechanism is group strategy-proof if no subgroup of bidders can jointly manipulate their reports so that all of them weakly benefit from this manipulation, while at least one bidder in the subgroup strictly benefits. The group strategy-proofness condition characterizes the requirement for designing auctions that are able to prevent bidders’ coalitional incentives.\(^{10}\) However, satisfying the group strategy-proofness condition demands truthful reporting is not strictly dominated for all possible coalitions \(C \subseteq N. \) It thus introduces a large number of incentive-compatibility constraints into the seller’s objective function, which considerably complicates the design problem (see the illustration in footnote 9, page 93).

In the next section, I will present a condition that is isomorphic to the group strategy-proofness but with a relatively simple expression. I also briefly discuss the intrinsic conflicts over different design goals of auction mechanisms.

4.4 Non-bossiness

A property that has played an important role in developing the axiomatics of resource allocation problems is the so-called non-bossiness condition (Satterthwaite and Sonnenschein, 1981).\(^{11}\) In brief, it says that whenever a change in a player’s preferences does not cause a change in her utility, it should not cause a change in others’ utilities. In other words, a player does not create externalities on others. Non-bossiness seems to be a mild and reasonable assumption as no one would like to be “bossed around”. In this section, I will discuss its relation with the group strategy-proofness condition and possible usages in designing collusion-proofness mechanisms.

\(^{10}\) Notice that if a mechanism is group strategy-proof, then it is clearly strategy-proof. However, the converse is not necessarily true. The question when strategy-proofness implies group strategy-proofness has been addressed by Le Breton and Zaporozhets (2009), Barberà et al. (2010), among others.

\(^{11}\) The non-bossiness condition has widely appeared in the literature on incentive compatibility. See Thomson (2014) for a comprehensive survey.
Definition 4.3: An auction mechanism is non-bossy, if $\forall \theta \in \Theta, \forall i \in N, \mu_i(\theta'_i, \theta_{-i}) = \mu_i(\theta)$ implies $\mu(\theta'_i, \theta_{-i}) = \mu(\theta)$.

The following result presents an isomorphic relation between the group strategy-proofness condition and the non-bossiness condition in auction mechanisms. It also implies that bidders’ coalitional incentives essentially come from the possible allocation externalities.

Observation 1: An auction mechanism is group strategy-proof if and only if it is non-bossy.

Similar results regarding the relation between non-bossiness and strategy-proofness can be found in the existing literature on other social choice rules. Even though none of these results have directly addressed the usage of group strategy-proofness in the setting as I discussed here (i.e., an economy with multiple objects auctioning among players with quasi-linear utility functions), the proofs are quite similar. I thus omit the proof of Observation 1 for simplicity.

The following observation further states that the non-bossiness condition is not compatible with efficient allocations in finite auction markets, which reveals some intrinsic conflicts over different goals in auction design problems.

Observation 2: In any auction mechanism, if it has an efficient allocation rule, then it is always bossy.

Recall that the premise of an efficient allocation rule is truthful reporting of private types from each individual bidder (i.e., the allocation rule is strategy-proof). However, if one’s utility (i.e., allocations and transfers) depends on her own report, she will report strategically as long as some non-truthful alternatives are profitable. As in any auction mechanisms, the allocations are decided either by each bidder’s own report (e.g., the first-price auction in single-unit auction), or by others’ reports (e.g., the second-price auction). All feasible strategy-proof allocation rules have to compute each bidder’s allocation based on others’ reports, i.e., they are bossy.

12 See, for example, Svensson (1999), Pápai (2000) for matching mechanisms (without transfers), and Goswami et al. (2014) for general exchange economies (with transfers).

13 I exclude the dictatorial allocation rule from my discussions here.
4.5 Conclusion

This paper illustrates the coalition formation processes in a variant of the VCG auction, the Ausubel’s clinching auction. I claim that the clinching auction is vulnerable to collusion in the sense that it always has a non-empty core. I further argue that a non-bossiness condition is crucial to such vulnerability. Given the incompatibility between efficiency and non-bossiness, designing a relatively efficient collusion-proofness auction mechanisms with multiple objects appears to be a nontrivial task for future research.

4.6 Appendix for Chapter 4

Proof of Proposition 4.1 I construct my proof based on two existing results: i) convexity of v is equivalent to $v(C' \cup \{i\}) - v(C') \leq v(C \cup \{i\}) - v(C)$, $\forall C' \subseteq C \subseteq N_i$ (Driessen, 1988); ii) if a game is convex, it always has a non-empty core (Shapley, 1971). My task is therefore to show the collusion game is convex.

Notice that with non-increasing marginal values, the collusion game is monotonic, i.e. if $C' \subseteq C$ then $v(C') = \mu'(C') \leq \mu'(C) = v(C)$. From Definition 4.1, I have

$$v(C \cup \{i\}) - v(C) = \mu'(C \cup \{i\}) - \mu'(C)$$

$$= \sum_{i \in C \cup \{j\}} (u_i(x^*_i) - p_{C \cup \{i\}}^C) - \sum_{i \in C} (u_i(x^*_i) - p_i^C)$$

$$= u_j(x_j) + \sum_{i \in C} p_i^C - \sum_{i \in C \cup \{j\}} p_{C \cup \{i\}}^C$$

I need to show that $v(C' \cup \{i\}) - v(C') \leq v(C \cup \{i\}) - v(C)$, $\forall C' \subseteq C \subseteq N_i$. This is equivalent to

$$u_j(x_j) + \sum_{i \in C'} p_i^C - \sum_{i \in C \cup \{j\}} p_{C \cup \{i\}}^C \leq u_j(x_j) + \sum_{i \in C} p_i^C - \sum_{i \in C \cup \{j\}} p_{C \cup \{i\}}^C$$

Organize the above inequality, we get
That is, the payment change of \(C' \) when adding an additional colluder \(j \) is greater than the corresponding payment change in a larger collusion \(C \), for all \(C' \subseteq C \).

Since in an Ausubel’s clinching auction, bidder \(i \)’s payment of the \(z \)'s item depends on the residual demand \(D_{-i}(\beta) \), which will be different if \(i \) stays in different coalitions. I therefore need to analyze the payment difference for each possible case.

Denote the group of bidders that belong to \(C \) but not \(C' \) as \(B = C \setminus C' \), and \(D \) be the group of “unaffected” bidders, \(D = N \setminus \{ C \cup \{ j \} \} \). Let \(\bar{m}_j(x) \) (resp. \(m_j(x) \)) be \(j \)'s highest (resp. lowest) marginal value, and \(b_D(x) \) be the first losing bid from a subset of bidders \(S \) when a bidder outside \(S \) is able to clinch an item, \(S \subseteq N \).

Case (i): \(\bar{m}_j(x) \leq b_D(x) \), the highest marginal value of \(j \) is lower than the first losing bid from the subset of bidders \(D \). Then including \(j \) into \(C \) will not affect the right-hand-side (RHS) payment difference in Equation (4.1). Since the first losing bid of a bidder group cannot be lower than the one from its subgroup (i.e. \(b_D(x) \leq b_{D \cup B}(x) \)), given \(C' \subseteq C \), the left-hand-side (LHS) is also unaffected. In this case, we get the equal sign in Equation (4.1).

Case (ii): \(b_D(x) \leq \bar{m}_j(x) \leq b_{D \cup B}(x) \), the highest marginal value of \(j \) lies in between the first losing bid in \(D \cup B \) and the first losing bid in the subset of bidders \(D \cup B \). Similar to Case (i), including \(j \) will not affect the LHS payment difference in Equation (4.1). However, for the RHS, the coalition \(C \) can gain from losing all \(m_j(x) \) (that are larger than \(b_D(x) \) to \(b_D(x) + \epsilon \) after including \(j \), regardless whether \(j \)'s smallest marginal value, \(m_j(x) \), is lower than \(b_D(x) \) or not). This cannot be the case without \(j \). Thus, the payment difference \(\sum_{i \in C' \cup \{ j \}} p_i^{C' \cup \{ j \}} - \sum_{i \in C} p_i^C \leq 0 \), and Equation (4.1) holds.

Case (iii): \(b_{D \cup B}(x) \leq \bar{m}_j(x) \), the highest marginal value of \(j \) is larger than the first losing bid in \(D \cup B \). For the LHS of Equation (4.1), similar to the argument for the payment difference of \(C \) in Case (ii), collusion \(C' \cup \{ j \} \) can suppress reports of all \(m_j(x) \) that are larger than \(b_{D \cup B}(x) \) to \(b_{D \cup B}(x) + \epsilon \) (no matter whether \(m_j(x) \) is lower than \(b_{D \cup B}(x) \) or not). Therefore, the payment difference of \(C \) from including \(j \), is the number
of j’s marginal values that are larger than $b^{D,B}(x)$. Similarly, the payment difference of C with and without j (i.e., the RHS of Equation (4.1)) is the number of j’s marginal values that are larger than $b^{D}(x)$. Recall that $b^{D}(x) \leq b^{D,B}(x)$ and $C' \subseteq C$, it is clear that the absolute gain from the collusion $C \cup \{j\}$ (i.e., misreporting all $m_j(x) \geq b^{D}(x)$ to $b^{D}(x)+\varepsilon$) is larger than the smaller coalition $C' \cup \{j\}$ (i.e. misreporting all $m_j(x) \geq b^{D,B}(x)$ to $b^{D,B}(x)+\varepsilon$). Equation (4.1) holds as both sides of Equation (4.1) are now less than zero.

In sum, for any possible marginal value of bidder j, Equation (4.1) is always valid. This completes the proof.

\[\square\]

Bibliography

Yeon-Koo Che and Jinwoo Kim. Optimal collusion-proof auctions. Journal of Economic

This thesis studies the impact of heterogeneous market participants on allocation outcomes in different market mechanisms; in addition, how to design alternative mechanisms that can more effectively allocate scarce resources with diverse economic and social goals.

Chapter 1 proposes two welfare criteria to evaluate the effective implementation of affirmative action policies in school choice problems. I characterize two type-specific acyclicity conditions in the student optimal stable mechanism with minority reserve policy, and demonstrate their respective (material) equivalence with the two welfare criteria in stable matching mechanisms. I further show that type-specific cycles will gradually vanish with the increase of the market size.

Chapter 2 studies how ex ante differences in bidders’ values affect their behavior in two standard multi-unit auction formats, uniform-price auction (UPA) and discriminatory-price auction (DPA). I characterize the set of asymmetric monotone Bayes–Nash equilibria in a simple multi-unit auction game in which two units of a homogeneous object are auctioned among a set of bidders.

Following Chapter 2, Chapter 3 further investigates and contrasts bidders’ collusion incentives in the UPA and the DPA when bidders have private information. I claim that the UPA is more vulnerable to collusion than the DPA in the sense that: 1) a bidder’s expected payoff is always lower from a larger coalition in a DPA; 2) for a class of all possible distributions, all coalitions are core-stable in the UPA, whereas only the grand coalition has a nonempty core in the DPA.

Chapter 4 illustrates the coalition formation processes in a variant of the Vickrey-Clarke-Groves auction, the Ausubel’s clinching auction, in auction markets with multiple heterogeneous objects. I claim that the clinching auction is vulnerable to collusion in the sense that it always has a non-empty core. I further argue that a non-bossiness condition is crucial to such vulnerability.
2004

1. Martin Grieger
 Internet-based Electronic Marketplaces and Supply Chain Management
2. Thomas Basbøll
 LIKENESS
 A Philosophical Investigation
3. Morten Knudsen
 Beslutningens vaklen
 En systemteoretisk analyse af moderniseringen af et amtskommunalt sundhedsvæsen 1980-2000
4. Lars Bo Jeppesen
 Organizing Consumer Innovation
 A product development strategy that is based on online communities and allows some firms to benefit from a distributed process of innovation by consumers
5. Barbara Dragsted
 SEGMENTATION IN TRANSLATION AND TRANSLATION MEMORY SYSTEMS
 An empirical investigation of cognitive segmentation and effects of integrating a TM system into the translation process
6. Jeanet Hardis
 Sociale partnerskaber
 Et socialkonstruktivistisk casestudie af partnerskabsaktørers virkelighedsopfattelse mellem identitet og legitimitet
7. Henriette Hallberg Thygesen
 System Dynamics in Action
8. Carsten Mejer Plath
 Strategisk Økonomistyring
9. Annemette Kjærgaard
 Knowledge Management as Internal Corporate Venturing
10. Knut Arne Hovdal
 De profesjonelle i endring
 Norsk ph.d., ej til salg gennem Samfundslitteratur
11. Søren Jeppesen
 Environmental Practices and Greening Strategies in Small Manufacturing Enterprises in South Africa
 – A Critical Realist Approach
12. Lars Frode Frederiksen
 Industriel forskningsledelse
 – på sporet af mønster og samarbejde i danske forskningsintensive virksomheder
13. Martin Jes Iversen
 The Governance of GN Great Nordic
 – in an age of strategic and structural transitions 1939-1988
14. Lars Pynt Andersen
 The Rhetorical Strategies of Danish TV Advertising
 A study of the first fifteen years with special emphasis on genre and irony
15. Jakob Rasmussen
 Business Perspectives on E-learning
16. Sof Thrane
 The Social and Economic Dynamics of Networks
 – a Weberian Analysis of Three Formalised Horizontal Networks
17. Lene Nielsen
 Engaging Personas and Narrative Scenarios – a study on how a user-centered approach influenced the perception of the design process in the e-business group at AstraZeneca
18. S.J Valstad
 Organisationsidentitet
 Norsk ph.d., ej til salg gennem Samfundslitteratur
19. Thomas Lyse Hansen
 Six Essays on Pricing and Weather risk in Energy Markets

20. Sabine Madsen
 Emerging Methods – An Interpretive Study of ISD Methods in Practice

21. Evis Sinani
 The Impact of Foreign Direct Investment on Efficiency, Productivity Growth and Trade: An Empirical Investigation

22. Bent Meier Sørensen
 Making Events Work Or, How to Multiply Your Crisis

23. Pernille Schnoor
 Brand Ethos: Om troværdige brand- og virksomhedsidentiteter i et retorisk og diskurseoretisk perspektiv

24. Sidsel Fabech
 Von welchem Österreich ist hier die Rede? Diskursive forhandlinger og magtkampe mellem rivaliserende nationale identitetskonstruktioner i østrigske pressediskurser

25. Klavs Odgaard Christensen
 Sprogpolitik og identitetsdannelse i flersprogede forbundsstater Et komparativt studie af Schweiz og Canada

26. Dana B. Minbaeva
 Human Resource Practices and Knowledge Transfer in Multinational Corporations

27. Holger Højlund
 Markedets politiske fornuft: Et studie af velfærdens organisering i perioden 1990-2003

28. Christine Mølgaard Frandsen
 A.s erfaring: Om mellemværendets praktik i en transformation af mennesket og subjektiviteten

29. Sine Nørholm Just
 The Constitution of Meaning – A Meaningful Constitution? Legitimacy, identity, and public opinion in the debate on the future of Europe

2005

1. Claus J. Varnes
 Managing product innovation through rules – The role of formal and structured methods in product development

2. Helle Hedegaard Hein
 Mellem konflikt og konsensus – Dialogudvikling på hospitalsklinikker

3. Axel Rosenø
 Customer Value Driven Product Innovation – A Study of Market Learning in New Product Development

4. Søren Buhl Pedersen
 Making space: An outline of place branding

5. Camilla Funck Ellehave
 Differences that Matter: An analysis of practices of gender and organizing in contemporary workplaces

6. Rigmor Madeleine Lond
 Styring af kommunale forvaltninger

7. Mette Aagaard Andreassen
 Supply Chain versus Supply Chain Benchmarking as a Means to Managing Supply Chains

8. Caroline Aggestam-Pontoppidan
 From an idea to a standard: The UN and the global governance of accountants’ competence

10. Vivienne Heng Ker-ni
 An Experimental Field Study on the
Effectiveness of Grocer Media Advertising
Measuring Ad Recall and Recognition, Purchase Intentions and Short-Term Sales

11. Allan Mortensen
Essays on the Pricing of Corporate Bonds and Credit Derivatives

12. Remo Stefano Chiari
Figure che fanno conoscere Itinerario sull’idea del valore cognitivo e espressivo della metafora e di altri tropi da Aristotele e da Vico fino al cognitivismo contemporaneo

13. Anders McIlquham-Schmidt
Strategic Planning and Corporate Performance
An integrative research review and a meta-analysis of the strategic planning and corporate performance literature from 1956 to 2003

14. Jens Geersbro
The TDF – PMI Case
Making Sense of the Dynamics of Business Relationships and Networks

15. Mette Andersen
Corporate Social Responsibility in Global Supply Chains
Understanding the uniqueness of firm behaviour

16. Eva Boxenbaum
Institutional Genesis: Micro – Dynamic Foundations of Institutional Change

17. Peter Lund-Thomsen
Capacity Development, Environmental Justice NGOs, and Governance: The Case of South Africa

18. Signe Jarlov
Konstruktioner af offentlig ledelse

19. Lars Stæhr Jensen
Vocabulary Knowledge and Listening Comprehension in English as a Foreign Language

An empirical study employing data elicited from Danish EFL learners

20. Christian Nielsen
Essays on Business Reporting
Production and consumption of strategic information in the market for information

21. Marianne Thejls Fischer
Egos and Ethics of Management Consultants

22. Annie Bekke Kjær
Performance management i Procesinnovation – belyst i et social-konstruktivistisk perspektiv

23. Suzanne Dee Pedersen
GENTAGELSENS METAMORFOSE
Om organisering af den kreative gøren i den kunstneriske arbejdspraksis

24. Benedikte Dorte Rosenbrink
Revenue Management
Økonomiske, konkurrencemæssige & organisatoriske konsekvenser

25. Thomas Riise Johansen
Written Accounts and Verbal Accounts
The Danish Case of Accounting and Accountability to Employees

26. Ann Fogelgren-Pedersen
The Mobile Internet: Pioneering Users’ Adoption Decisions

27. Birgitte Rasmussen
Ledelse i fællesskab – de tillidsvalgtes fornyende rolle

28. Gitte Thit Nielsen
Remerger – skabende ledelseskæfter i fusion og opkøb

29. Carmine Gioia
A MICROECONOMETRIC ANALYSIS OF MERGERS AND ACQUISITIONS
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Ole Hinz</td>
<td>Den effektive forandringsleder: pilot, pædagog eller politiker? Et studie i arbejdslæders meningstilskrivninger i forbindelse med vellykket gennemførelse af ledelsesinitierede forandringsprojekter</td>
</tr>
<tr>
<td>31</td>
<td>Kjell-Åge Gotvassli</td>
<td>Et praksisbasert perspektiv på dynamiske læringsnettverk i toppidretten Norsk ph.d., ej til salg gennem Samfundslitteratur</td>
</tr>
<tr>
<td>32</td>
<td>Henriette Langstrup Nielsen</td>
<td>Linking Healthcare An inquiry into the changing performances of web-based technology for asthma monitoring</td>
</tr>
<tr>
<td>33</td>
<td>Karin Tweddell Leivinsen</td>
<td>Virtuel Uddannelsespraksis Master i IKT og Læring – et casestudie i hvordan proaktiv proceshåndtering kan forbedre praksis i virtuelle læringsmiljøer</td>
</tr>
<tr>
<td>34</td>
<td>Anika Liversage</td>
<td>Finding a Path Labour Market Life Stories of Immigrant Professionals</td>
</tr>
<tr>
<td>35</td>
<td>Kasper Elmquist Jørgensen</td>
<td>Studier i samspillet mellem stat og erhvervsliv i Danmark under 1. verdenskrig</td>
</tr>
<tr>
<td>36</td>
<td>Finn Janning</td>
<td>A DIFFERENT STORY Seduction, Conquest and Discovery</td>
</tr>
<tr>
<td>2006</td>
<td>Christian Vintergaard</td>
<td>Early Phases of Corporate Venturing</td>
</tr>
<tr>
<td>2</td>
<td>Niels Rom-Poulsen</td>
<td>Essays in Computational Finance</td>
</tr>
<tr>
<td>3</td>
<td>Tina Brandt Husman</td>
<td>Organisational Capabilities, Competitive Advantage & Project-Based Organisations The Case of Advertising and Creative Good Production</td>
</tr>
<tr>
<td>4</td>
<td>Mette Rosenkrands Johansen</td>
<td>Practice at the top – how top managers mobilise and use non-financial performance measures</td>
</tr>
<tr>
<td>5</td>
<td>Eva Parum</td>
<td>Corporate governance som strategisk kommunikations- og ledelsesværktøj</td>
</tr>
<tr>
<td>6</td>
<td>Susan Aagaard Petersen</td>
<td>Culture's Influence on Performance Management: The Case of a Danish Company in China</td>
</tr>
<tr>
<td>7</td>
<td>Thomas Nicolai Pedersen</td>
<td>The Discursive Constitution of Organizational Governance – Between unity and differentiation The Case of the governance of environmental risks by World Bank environmental staff</td>
</tr>
<tr>
<td>8</td>
<td>Cynthia Selin</td>
<td>Volatile Visions: Transactions in Anticipatory Knowledge</td>
</tr>
<tr>
<td>9</td>
<td>Jesper Banghøj</td>
<td>Financial Accounting Information and Compensation in Danish Companies</td>
</tr>
<tr>
<td>10</td>
<td>Mikkel Lucas Overby</td>
<td>Strategic Alliances in Emerging High-Tech Markets: What’s the Difference and does it Matter?</td>
</tr>
<tr>
<td>11</td>
<td>Tine Aage</td>
<td>External Information Acquisition of Industrial Districts and the Impact of Different Knowledge Creation Dimensions</td>
</tr>
</tbody>
</table>
A case study of the Fashion and Design Branch of the Industrial District of Montebelluna, NE Italy

12. Mikkel Flyverbom
Making the Global Information Society Governable
On the Governmentality of Multi-Stakeholder Networks

13. Anette Grønning
Personen bag Tilstedevær i e-mail som inter-aktionsform mellem kunde og med-arbejder i dansk forsikringskontekst

14. Jørn Helder
One Company – One Language? The NN-case

15. Lars Bjerregaard Mikkelsen
Differing perceptions of customer value
Development and application of a tool for mapping perceptions of customer value at both ends of customer-supplier dyads in industrial markets

16. Lise Granerud
Exploring Learning
Technological learning within small manufacturers in South Africa

17. Esben Rahbek Pedersen
Between Hopes and Realities: Reflections on the Promises and Practices of Corporate Social Responsibility (CSR)

18. Ramona Samson
The Cultural Integration Model and European Transformation. The Case of Romania

2007

1. Jakob Vestergaard
Discipline in The Global Economy
Panopticism and the Post-Washington Consensus

2. Heidi Lund Hansen
Spaces for learning and working
A qualitative study of change of work, management, vehicles of power and social practices in open offices

3. Sudhanshu Rai
Exploring the internal dynamics of software development teams during user analysis
A tension enabled Institutionalization Model; “Where process becomes the objective”

Ej til salg gennem Samfundslitteratur

5. Serden Ozcan
EXPLORING HETEROGENEITY IN ORGANIZATIONAL ACTIONS AND OUTCOMES
A Behavioural Perspective

6. Kim Sundtoft Hald
Inter-organizational Performance Measurement and Management in Action
– An Ethnography on the Construction of Management, Identity and Relationships

7. Tobias Lindeberg
Evaluative Technologies
Quality and the Multiplicity of Performance

8. Merete Wedell-Wedellsborg
Den globale soldat
Identitetsdannelse og identitetsledelse i multinationale militære organisasjoner

9. Lars Frederiksen
Open Innovation Business Models
Innovation in firm-hosted online user communities and inter-firm project ventures in the music industry
– A collection of essays

10. Jonas Gabrielsen
Retorisk toposlære – fra statisk ‘sted’ til persuasiv aktivitet
11. Christian Moldt-Jørgensen
_Fra meningsløs til meningsfuld evaluerung.
Anvendelsen af studentertilfredsheds-målinger på de korte og mellemlange videregående uddannelser set fra et psykodynamisk systemperspektiv_

12. Ping Gao
Extending the application of actor-network theory
Cases of innovation in the telecommunications industry

13. Peter Mejlbys
_Frihed og fængsel, en del af den samme drøm?
Et phronetisk baseret casestudie af frigørelsens og kontrollens sam eksistens i værdibaseret ledelse!_

14. Kristina Birch
Statistical Modelling in Marketing

15. Signe Poulsen
Sense and sensibility: The language of emotional appeals in insurance marketing

16. Anders Bjerre Trolle
Essays on derivatives pricing and dynamic asset allocation

17. Peter Feldhüttet
Empirical Studies of Bond and Credit Markets

18. Jens Henrik Eggert Christensen
Default and Recovery Risk Modeling and Estimation

19. Maria Theresa Larsen
_Academic Enterprise: A New Mission for Universities or a Contradiction in Terms?
Four papers on the long-term implications of increasing industry involvement and commercialization in academia_

20. Morten Wellendorf
_Postimplementering af teknologi i den offentlige forvaltning
Analysen af en organisations kontinuerlige arbejde med informations-teknologi_

21. Ekaterina Mhaanna
Concept Relations for Terminological Process Analysis

22. Stefan Ring Thorbjørnsen
_Forsvaret i forandring
Et studie i officerers kapabiliteter under påvirkning af omverdenens forandringspres mod øget styring og læring_

23. Christa Breum Amhøj
Det selvskabte medlemskab om managementstaten, dens styringsteknologier og indbyggere

24. Karoline Bromose
Between Technological Turbulence and Operational Stability – An empirical case study of corporate venturing in TDC

25. Susanne Justesen
Navigating the Paradoxes of Diversity in Innovation Practice – A Longitudinal study of six very different innovation processes – in practice

26. Luise Noring Henler
Conceptualising successful supply chain partnerships – Viewing supply chain partnerships from an organisational culture perspective

27. Mark Mau
_Kampen om telefonen
Det danske telefonvæsen under den tyske besættelse 1940-45_

28. Jakob Halskov
The semiautomatic expansion of existing terminological ontologies using knowledge patterns discovered
29. Gergana Koleva
 European Policy Instruments Beyond Networks and Structure: The Innovative Medicines Initiative

30. Christian Geisler Asmussen
 Global Strategy and International Diversity: A Double-Edged Sword?

31. Christina Holm-Petersen
 Stolthed og fordom
 Kultur- og identitetsarbejde ved skabelsen af en ny sengeafdeling gennem fusion

32. Hans Peter Olsen
 Hybrid Governance of Standardized States
 Causes and Contours of the Global Regulation of Government Auditing

33. Lars Bøge Sørensen
 Risk Management in the Supply Chain

34. Peter Aagaard
 Det unikkes dynamikker
 De institutionelle mulighedsbetingelser bag den individuelle udforskning i professionelt og frivilligt arbejde

35. Yun Mi Antorini
 Brand Community Innovation
 An Intrinsic Case Study of the Adult Fans of LEGO Community

36. Joachim Lynggaard Boll
 Labor Related Corporate Social Performance in Denmark
 Organizational and Institutional Perspectives

2008

1. Frederik Christian Vinten
 Essays on Private Equity

2. Jesper Clement
 Visual Influence of Packaging Design on In-Store Buying Decisions

3. Marius Brostrøm Kousgaard
 Tid til kvalitetsmåling?
 – Studier af indrulleringsprocesser i forbindelse med introduktionen af kliniske kvalitetsdatabaser i speciallægepraksissektoren

4. Irene Skovgaard Smith
 Management Consulting in Action
 Value creation and ambiguity in client-consultant relations

5. Anders Rom
 Management accounting and integrated information systems
 How to exploit the potential for management accounting of information technology

6. Marina Candi
 Aesthetic Design as an Element of Service Innovation in New Technology-based Firms

7. Morten Schnack
 Teknologi og tværfaglighed
 – en analyse af diskussionen omkring indførelse af EPJ på en hospitalsafdeling

8. Helene Balslev Clausen
 Juntos pero no revueltos – un estudio sobre emigrantes norteamericanos en un pueblo mexicano

9. Lise Justesen
 Kunsten at skrive revisionsrapporter.
 En beretning om forvaltningsrevisions beretninger

10. Michael E. Hansen
 The politics of corporate responsibility: CSR and the governance of child labor and core labor rights in the 1990s

11. Anne Roepstorff
 Holdning for handling – en etnologisk undersøgelse af Virksomheders Sociale Ansvar/CSR
12. Claus Bajlum
Essays on Credit Risk and Credit Derivatives

13. Anders Bojesen
The Performative Power of Competence – an Inquiry into Subjectivity and Social Technologies at Work

14. Satu Reijonen
*Green and Fragile
A Study on Markets and the Natural Environment*

15. Ilduara Busta
*Corporate Governance in Banking
A European Study*

16. Kristian Anders Hvass
*A Boolean Analysis Predicting Industry Change: Innovation, Imitation & Business Models
The Winning Hybrid: A case study of isomorphism in the airline industry*

17. Trine Paludan
*De uvidende og de udviklingsparate
Identitet som mulighed og restriktion blandt fabriksarbejdere på det aftaylo-riserede fabriksgulv*

18. Kristian Jakobsen
Foreign market entry in transition economies: Entry timing and mode choice

19. Jakob Elming
Syntactic reordering in statistical machine translation

20. Lars Brømsøe Termansen
*Regional Computable General Equilibrium Models for Denmark
Three papers laying the foundation for regional CGE models with agglomeration characteristics*

21. Mia Reinholt
The Motivational Foundations of Knowledge Sharing

22. Frederikke Krogh-Melbom
*The Co-Evolution of Institutions and Technology
– A Neo-Institutional Understanding of Change Processes within the Business Press – the Case Study of Financial Times*

23. Peter D. Ørberg Jensen
OFFSHORING OF ADVANCED AND HIGH-VALUE TECHNICAL SERVICES: ANTECEDENTS, PROCESS DYNAMICS AND FIRMLEVEL IMPACTS

24. Pham Thi Song Hanh
Functional Upgrading, Relational Capability and Export Performance of Vietnamese Wood Furniture Producers

25. Mads Vangkilde
*Why wait?
An Exploration of first-mover advantages among Danish e-grocers through a resource perspective*

26. Hubert Buch-Hansen
*Rethinking the History of European Level Merger Control
A Critical Political Economy Perspective*

2009

1. Vivian Lindhardsen
From Independent Ratings to Communal Ratings: A Study of CWA Raters’ Decision-Making Behaviours

2. Guðrið Weihe
Public-Private Partnerships: Meaning and Practice

3. Chris Nøkkentved
*Enabling Supply Networks with Collaborative Information Infrastructures
An Empirical Investigation of Business Model Innovation in Supplier Relationship Management*

4. Sara Louise Muhr
Wound, Interrupted – On the Vulnerability of Diversity Management
5. Christine Sestoft
 Forbrugeradfærd i et Stats- og Livsformsteoretisk perspektiv

6. Michael Pedersen
 Tune in, Breakdown, and Reboot: On the production of the stress-fit self-managing employee

7. Salla Lutz
 Position and Reposition in Networks – Exemplified by the Transformation of the Danish Pine Furniture Manufacturers

8. Jens Forssbæk
 Essays on market discipline in commercial and central banking

9. Tine Murphy
 Sense from Silence – A Basis for Organised Action
 How do Sensemaking Processes with Minimal Sharing Relate to the Reproduction of Organised Action?

10. Sara Malou Strandvad
 Inspirations for a new sociology of art: A sociomaterial study of development processes in the Danish film industry

11. Nicolaas Mouton
 On the evolution of social scientific metaphors: A cognitive-historical enquiry into the divergent trajectories of the idea that collective entities – states and societies, cities and corporations – are biological organisms.

12. Lars Andreas Knutsen
 Mobile Data Services: Shaping of user engagements

13. Nikolaos Theodoros Korfiatis
 Information Exchange and Behavior: A Multi-method Inquiry on Online Communities

14. Jens Albæk
 Forestillinger om kvalitet og tværfaglighed på sygehuse – skabelse af forestillinger i læge- og plejegrupperne angående relevans af nye idéer om kvalitetsudvikling gennem tolkningsprocesser

15. Maja Lotz
 The Business of Co-Creation – and the Co-Creation of Business

16. Gitte P. Jakobsen
 Narrative Construction of Leader Identity in a Leader Development Program Context

17. Dorte Hermansen
 “Living the brand” som en brandorienteret dialogisk praxis: Om udvikling af medarbejdernes brandorienterede dømmekraft

18. Aseem Kinra
 Supply Chain (logistics) Environmental Complexity

19. Michael Nørager
 How to manage SMEs through the transformation from non innovative to innovative?

20. Kristin Wallevik
 Corporate Governance in Family Firms: The Norwegian Maritime Sector

21. Bo Hansen Hansen
 Beyond the Process
 Enriching Software Process Improvement with Knowledge Management

22. Annemette Skot-Hansen
 Franske adjektivisk afledte adverbier, der tager præpositionssyntagmer indledt med præpositionen à som argumenter
 En valensgrammatisk undersøgelse

23. Line Gry Knudsen
 Collaborative R&D Capabilities
 In Search of Micro-Foundations
24. Christian Scheuer
Employers meet employees
Essays on sorting and globalization

End User Participation between Processes of Organizational and Architectural Design

25. Rasmus Johnsen
The Great Health of Melancholy
A Study of the Pathologies of Performativity

26. Ha Thi Van Pham
Internationalization, Competitiveness Enhancement and Export Performance of Emerging Market Firms: Evidence from Vietnam

27. Henriette Balieu
Kontrolbegrebetts betydning for kausativalternationen i spansk
En kognitiv-typologisk analyse

28. Yen Tran
Organizing Innovation in Turbulent Fashion Market
Four papers on how fashion firms create and appropriate innovation value

1. Yen Tran
Organizing Innovation in Turbulent Fashion Market
Four papers on how fashion firms create and appropriate innovation value

7. Rex Degnegaard
Strategic Change Management
Change Management Challenges in the Danish Police Reform

8. Ulrik Schultz Brix
Værdi i rekruttering – den sikre beslutning
En pragmatisk analyse af perception og synliggørelse af værdi i rekrutterings- og udvælgelsesarbejdet

2. Anders Raastrup Kristensen
Metaphysical Labour
Flexibility, Performance and Commitment in Work-Life Management

9. Jan Ole Similä
Kontraksledelse
Relasjonen mellom virksomhetsledelse og kontraktshåndtering, belyst via fire norske virksomheter

3. Margrét Sigrún Sigurdardottir
Dependently independent
Co-existence of institutional logics in the recorded music industry

10. Susanne Boch Waldorff
Emerging Organizations: In between local translation, institutional logics and discourse

4. Ásta Dis Óladóttir
Internationalization from a small domestic base:
An empirical analysis of Economics and Management

11. Brian Kane
Performance Talk
Next Generation Management of Organizational Performance

5. Christine Secher
E-deltagelse i praksis – politikernes og forvaltningens medkonstruktion og konsekvenserne heraf

12. Lars Ohnemus
Brand Thrust: Strategic Branding and Shareholder Value
An Empirical Reconciliation of two Critical Concepts

6. Marianne Stang Våland
What we talk about when we talk about space:

13. Jesper Schlamovitz
Håndtering af usikkerhed i film- og byggeprojekter

14. Tommy Moesby-Jensen
Det faktiske livs forbindlighed
Førsøkstatisk informeret, ny-aristotelisk ἡθος-tænkning hos Martin Heidegger

15. Christian Fich
Two Nations Divided by Common Values
French National Habitus and the Rejection of American Power
16. Peter Beyer
Processer, sammenhængskraft og fleksibilitet
Et empirisk casestudie af omstillingsforløb i fire virksomheder

17. Adam Buchhorn
Markets of Good Intentions
Constructing and Organizing Biogas Markets Amid Fragility and Controversy

18. Cecilie K. Moesby-Jensen
Social læring og fælles praksis
Et mixed method studie, der belyser læringkonsekvenser af et lederkursus for et praksisfællesskab af offentlige mellemledere

19. Heidi Boye
Fødevarer og sundhed i senmodernismen
– En indsigt i hyggefænomenet og de relaterede fødevareraprisser

20. Kristine Munkgård Pedersen
Flygtige forbindelser og midlertidige mobiliseringer
Om kulturel produktion på Roskilde Festival

21. Oliver Jacob Weber
Causes of Intercompany Harmony in Business Markets – An Empirical Investigation from a Dyad Perspective

22. Susanne Ekman
Authority and Autonomy Paradoxes of Modern Knowledge Work

23. Anette Frey Larsen
Kvalitetsledelse på danske hospitaler – Ledelsernes indflydelse på introduktion og vedligeholdelse af kvalitetsstrategier i det danske sundhedsvæsen

24. Toyoko Sato
Performativity and Discourse: Japanese Advertisements on the Aesthetic Education of Desire

25. Kenneth Brinch Jensen
Identifying the Last Planner System
Lean management in the construction industry

26. Javier Busquets
Orchestrating Network Behavior for Innovation

27. Luke Patey
The Power of Resistance: India’s National Oil Company and International Activism in Sudan

28. Mette Vedel
Value Creation in Triadic Business Relationships. Interaction, Interconnection and Position

29. Kristian Tørning
Knowledge Management Systems in Practice – A Work Place Study

30. Qingxin Shi
An Empirical Study of Thinking Aloud Usability Testing from a Cultural Perspective

31. Tanja Juul Christiansen
Corporate blogging: Medarbejdernes kommunikative handlekraft

32. Malgorzata Ciesielska
Hybrid Organisations. A study of the Open Source – business setting

33. Jens Dick-Nielsen
Three Essays on Corporate Bond Market Liquidity

34. Sabrina Speiermann
Modstandens Politik
Kampagnestyring i Velfærdsstaten. En diskussion af trafikkampagners styringspotentiale

35. Julie Uldam
Fickle Commitment. Fostering political engagement in ‘the flighty world of online activism’
36. Annegrete Juul Nielsen
Traveling technologies and transformations in health care

37. Athur Mühlen-Schulte
Organising Development Power and Organisational Reform in the United Nations Development Programme

38. Louise Rygaard Jonas
Branding på butiksgulvet: Et case-studie af kultur- og identitetsarbejdet i Kvickly

2011

1. Stefan Fraenkel
Key Success Factors for Sales Force Readiness during New Product Launch: A Study of Product Launches in the Swedish Pharmaceutical Industry

2. Christian Plesner Rossing
International Transfer Pricing in Theory and Practice

3. Tobias Dam Hede
Samtalekunst og ledelsesdisciplin – en analyse af coachingsdiskursens genealogi og governmentality

4. Kim Pettersson
Essays on Audit Quality, Auditor Choice, and Equity Valuation

5. Henrik Merkelsen
The expert-lay controversy in risk research and management. Effects of institutional distances. Studies of risk definitions, perceptions, management and communication

6. Simon S. Torp
Employee Stock Ownership: Effect on Strategic Management and Performance

7. Mie Harder
Internal Antecedents of Management Innovation

8. Ole Helby Petersen
Public-Private Partnerships: Policy and Regulation – With Comparative and Multi-level Case Studies from Denmark and Ireland

9. Morten Krogh Petersen
‘Good’ Outcomes. Handling Multiplicity in Government Communication

10. Kristian Tangsgaard Hvelplund
Allocation of cognitive resources in translation - an eye-tracking and keylogging study

11. Moshe Yonatany
The Internationalization Process of Digital Service Providers

12. Anne Vestergaard
Distance and Suffering Humanitarian Discourse in the age of Mediatization

13. Thorsten Mikkelsen
Personligheds indflydelse på forretningsrelationer

14. Jane Thostrup Jagd
Hvorfor fortsætter fusionsbølgen udover “the tipping point”? – en empirisk analyse af information og kognitioner om fusioner

15. Gregory Gimpel
Value-driven Adoption and Consumption of Technology: Understanding Technology Decision Making

16. Thomas Stengade Sønderskov
Den nye mulighed Social innovation i en forretningsmæssig kontekst

17. Jeppe Christoffersen
Donor supported strategic alliances in developing countries

18. Vibeke Vad Baunsgaard
Dominant Ideological Modes of Rationality: Cross functional
integration in the process of product innovation

19. Throstur Olaf Sigurjonsson
Governance Failure and Iceland's Financial Collapse

20. Allan Sall Tang Andersen
Essays on the modeling of risks in interest-rate and inflation markets

21. Heidi Tscherning
Mobile Devices in Social Contexts

22. Birgitte Gorm Hansen
Adapting in the Knowledge Economy Lateral Strategies for Scientists and Those Who Study Them

23. Kristina Vaarst Andersen
Optimal Levels of Embeddedness The Contingent Value of Networked Collaboration

24. Justine Grønbæk Pors
Noisy Management A History of Danish School Governing from 1970-2010

25. Stefan Linder
Micro-foundations of Strategic Entrepreneurship
Essays on Autonomous Strategic Action

26. Xin Li
Toward an Integrative Framework of National Competitiveness
An application to China

27. Rune Thorbjørn Clausen
Værdifuld arkitektur
Et eksplorativt studie af bygningers rolle i virksomheders værdiskabelse

28. Monica Viken
Markedsundersøkelser som bevis i varemerke- og markedsføringsrett

29. Christian Wymann
Tattooing
The Economic and Artistic Constitution of a Social Phenomenon

30. Sanne Frandsen
Productive Incoherence
A Case Study of Branding and Identity Struggles in a Low-Prestige Organization

31. Mads Stenbo Nielsen
Essays on Correlation Modelling

32. Ivan Häuser
Følelse og sprog
Etablering af en ekspressiv kategori, eksemplificeret på russisk

33. Sebastian Schwenen
Security of Supply in Electricity Markets

2012

1. Peter Holm Andreasen
The Dynamics of Procurement Management
- A Complexity Approach

2. Martin Haulrich
Data-Driven Bitext Dependency Parsing and Alignment

3. Line Kirkegaard
Konsulenten i den anden nat
En undersøgelse af det intense arbejdsliv

4. Tonny Stenheim
Decision usefulness of goodwill under IFRS

5. Morten Lind Larsen
Produktivitet, vækst og velfærd
Industrirådet og efterkrigstidens Danmark 1945 - 1958

6. Petter Berg
Cartel Damages and Cost Asymmetries

7. Lynn Kahle
Experiential Discourse in Marketing
A methodical inquiry into practice and theory

8. Anne Roelsgaard Obling
Management of Emotions in Accelerated Medical Relationships
9. Thomas Frandsen
Managing Modularity of Service Processes Architecture

10. Carina Christine Skovmøller
CSR som noget særligt
Et casestudie om styring og menings-skabelse i relation til CSR ud fra en intern optik

11. Michael Tell
Fradragsbeskæring af selskabers finansieringsudgifter
En skatteretlig analyse af SEL §§ 11, 11B og 11C

12. Morten Holm
Customer Profitability Measurement Models
Their Merits and Sophistication across Contexts

13. Katja Joo Dyppel
Beskatning af derivater
En analyse af dansk skatteret

14. Esben Anton Schultz
Essays in Labor Economics
Evidence from Danish Micro Data

15. Carina Risvig Hansen
"Contracts not covered, or not fully covered, by the Public Sector Directive"

16. Anja Svejgaard Pors
Iværksættelse af kommunikation - patientfigurer i hospitalets strategiske kommunikation

17. Frans Bévort
Making sense of management with logics
An ethnographic study of accountants who become managers

18. René Kallestrup
The Dynamics of Bank and Sovereign Credit Risk

19. Brett Crawford
Revisiting the Phenomenon of Interests in Organizational Institutionalism
The Case of U.S. Chambers of Commerce

20. Mario Daniele Amore
Essays on Empirical Corporate Finance

21. Arne Stjernholm Madsen
The evolution of innovation strategy
Studied in the context of medical device activities at the pharmaceutical company Novo Nordisk A/S in the period 1980-2008

22. Jacob Holm Hansen
Is Social Integration Necessary for Corporate Branding?
A study of corporate branding strategies at Novo Nordisk

23. Stuart Webber
Corporate Profit Shifting and the Multinational Enterprise

24. Helene Ratner
Promises of Reflexivity
Managing and Researching Inclusive Schools

25. Therese Strand
The Owners and the Power: Insights from Annual General Meetings

26. Robert Gavin Strand
In Praise of Corporate Social Responsibility Bureaucracy

27. Nina Sormunen
Auditor’s going-concern reporting
Reporting decision and content of the report

28. John Bang Mathiasen
Learning within a product development working practice: - an understanding anchored in pragmatism

29. Philip Holst Riis
Understanding Role-Oriented Enterprise Systems: From Vendors to Customers

30. Marie Lisa Dacanay
Social Enterprises and the Poor
Enhancing Social Entrepreneurship and Stakeholder Theory
31. Fumiko Kano Glückstad
Bridging Remote Cultures: Cross-lingual concept mapping based on the information receiver’s prior-knowledge

32. Henrik Barslund Fosse
Empirical Essays in International Trade

33. Peter Alexander Albrecht
*Foundational hybridity and its reproduction
Security sector reform in Sierra Leone*

34. Maja Rosenstock
*CSR - hvor svært kan det være?
Kulturanalytisk casestudie om udfordringer og dilemmaer med at forankre Coops CSR-strategi*

35. Jeanette Rasmussen
*Tweens, medier og forbrug
Et studie af 10-12 åriges danske børns brug af internettet, opfattelse og forståelse af markedsføring og forbrug*

36. Ib Tunby Gulbrandsen
*‘This page is not intended for a US Audience’
A five-act spectacle on online communication, collaboration & organization.*

37. Kasper Aalling Teilmann
Interactive Approaches to Rural Development

38. Mette Mogensen
*The Organization(s) of Well-being and Productivity
(Re)assembling work in the Danish Post*

39. Søren Friis Møller
*From Disinterestedness to Engagement
Towards Relational Leadership In the Cultural Sector*

40. Nico Peter Berhausen
Management Control, Innovation and Strategic Objectives – Interactions and Convergence in Product Development Networks

41. Balder Onarheim
*Creativity under Constraints
Creativity as Balancing ‘Constrainedness’*

42. Haoyong Zhou
Essays on Family Firms

43. Elisabeth Naima Mikkelsen
*Making sense of organisational conflict
An empirical study of enacted sense-making in everyday conflict at work*

2013

1. Jacob Lyngsie
Entrepreneurship in an Organizational Context

2. Signe Groth-Brodersen
*Fra ledelse til selvet
En socialpsykologisk analyse af forholdet imellem selvedelse, ledelse og stress i det moderne arbejdsliv*

3. Nis Høyrup Christensen
Shaping Markets: A Neoinstitutional Analysis of the Emerging Organizational Field of Renewable Energy in China

*As a matter of size
THE IMPORTANCE OF CRITICAL MASS AND THE CONSEQUENCES OF SCARCITY FOR TELEVISION MARKETS*

5. Christine D. Isakson
Coworker Influence and Labor Mobility Essays on Turnover, Entrepreneurship and Location Choice in the Danish Maritime Industry

6. Niels Joseph Jerne Lennon
*Accounting Qualities in Practice
Rhizomatic stories of representational faithfulness, decision making and control*

7. Shannon O’Donnell
*Making Ensemble Possible
How special groups organize for collaborative creativity in conditions of spatial variability and distance*
8. Robert W. D. Veitch
Access Decisions in a Partly-Digital World
Comparing Digital Piracy and Legal Modes for Film and Music

9. Marie Mathiesen
Making Strategy Work
An Organizational Ethnography

10. Arisa Shollo
The role of business intelligence in organizational decision-making

11. Mia Kaspersen
The construction of social and environmental reporting

12. Marcus Møller Larsen
The organizational design of offshoring

13. Mette Ohm Rørdam
EU Law on Food Naming
The prohibition against misleading names in an internal market context

14. Hans Peter Rasmussen
GIV EN GED!
Kan giver-idealtyper forklare støtte til velgørenhed og understøtte relationsopbygning?

15. Ruben Schachtenhaufen
Fonetisk reduktion i dansk

16. Peter Koerver Schmidt
Dansk CFC-beskatning I et internationalt og komparativt perspektiv

17. Morten Froholdt
Strategi i den offentlige sektor
En kortlægning af styringsmæssig kontekst, strategisk tilgang, samt anvendte redskaber og teknologier for udvalgte danske statslige styrelser

18. Annette Camilla Sjørup
Cognitive effort in metaphor translation
An eye-tracking and key-loging study

19. Tamara Stucchi
The Internationalization of Emerging Market Firms: A Context-Specific Study

20. Thomas Lopdrup-Hjorth
“Let’s Go Outside”: The Value of Co-creation

21. Ana Alačovska
Genre and Autonomy in Cultural Production
The case of travel guidebook production

22. Marius Gudmand-Høyer
Stemningssindssygdommenes historie i det 19. århundrede
Omttydningen af melankolien og manien som bipolære stemningslidelser i dansk sammenhæng under hensyn til dannelsen af det moderne følelseslivs relative autonomi.
En problematiserings- og erfarings-analytisk undersøgelse

23. Lichen Alex Yu
Fabricating an S&OP Process
Circulating References and Matters of Concern

24. Esben Alfort
The Expression of a Need
Understanding search

25. Trine Pallesen
Assembling Markets for Wind Power
An Inquiry into the Making of Market Devices

26. Anders Koed Madsen
Web-Visions
Repurposing digital traces to organize social attention

27. Lærke Højgaard Christiansen
BREWING ORGANIZATIONAL RESPONSES TO INSTITUTIONAL LOGICS

28. Tommy Kjær Lassen
EGENTLIG SELVLEDELSE
En ledelsesfilosofisk afhandling om selvedelsens paradoksale dynamik og eksistentielle engagement
29. Morten Rossing
Local Adaption and Meaning Creation in Performance Appraisal

30. Søren Obed Madsen
Lederen som oversætter
Et oversættelsestheoretisk perspektiv på strategisk arbejde

31. Thomas Høgenhaven
Open Government Communities
Does Design Affect Participation?

32. Kirstine Zinck Pedersen
Failsafe Organizing?
A Pragmatic Stance on Patient Safety

33. Anne Petersen
Hverdagslogikker i psykiatrisk arbejde
En institutionsetnografisk undersøgelse af hverdagen i psykiatriske organisationer

34. Didde Maria Humle
Fortællinger om arbejde

35. Mark Holst-Mikkelsen
Strategiesekvering i praksis – barrierer og muligheder!

36. Malek Maalouf
Sustaining lean
Strategies for dealing with organizational paradoxes

37. Nicolaj Tofte Brenneche
Systemic Innovation In The Making
The Social Productivity of Cartographic Crisis and Transitions in the Case of SEEIT

38. Morten Gylling
The Structure of Discourse
A Corpus-Based Cross-Linguistic Study

39. Binzhang YANG
Urban Green Spaces for Quality Life - Case Study: the landscape architecture for people in Copenhagen

40. Michael Friis Pedersen
Finance and Organization:
The Implications for Whole Farm Risk Management

41. Even Fallan
Issues on supply and demand for environmental accounting information

42. Ather Nawaz
Website user experience
a cross-cultural study of the relation between users’ cognitive style, context of use, and information architecture of local websites

43. Karin Beukel
The Determinants for Creating Valuable Inventions

44. Arjan Markus
External Knowledge Sourcing and Firm Innovation
Essays on the Micro-Foundations of Firms’ Search for Innovation

2014

1. Solon Moreira
Four Essays on Technology Licensing and Firm Innovation

2. Karin Strzeletz Ivertsen
Partnership Drift in Innovation Processes
A study of the Think City electric car development

3. Kathrine Hoffmann Pii
Responsibility Flows in Patient-centred Prevention

4. Jane Bjørn Vedel
Managing Strategic Research
An empirical analysis of science-industry collaboration in a pharmaceutical company

5. Martin Gylling
Processuel strategi i organisationer
Monografi om dobbeltheden i tænkning af strategi, dels som vidensfelt i organisationsteori, dels som kunstnerisk tilgang til at skabe i erhvervsmæssig innovation
6. Linne Marie Lauesen
 Corporate Social Responsibility in the Water Sector:
 How Material Practices and their Symbolic and Physical Meanings Form a Colonising Logic

7. Maggie Qiuzhu Mei
 LEARNING TO INNOVATE:
 The role of ambidexterity, standard, and decision process

8. Inger Høedt-Rasmussen
 Developing Identity for Lawyers
 Towards Sustainable Lawyering

9. Sebastian Fux
 Essays on Return Predictability and Term Structure Modelling

10. Thorbjørn N. M. Lund-Poulsen
 Essays on Value Based Management

11. Oana Brindusa Albu
 Transparency in Organizing:
 A Performative Approach

12. Lena Olaison
 Entrepreneurship at the limits

13. Hanne Sørum
 DRESSED FOR WEB SUCCESS?
 An Empirical Study of Website Quality in the Public Sector

14. Lasse Folke Henriksen
 Knowing networks
 How experts shape transnational governance

15. Maria Halbinger
 Entrepreneurial Individuals
 Empirical Investigations into Entrepreneurial Activities of Hackers and Makers

16. Robert Spliid
 Kapitalfondenes metoder og kompetencer

17. Christiane Stelling
 Public-private partnerships & the need, development and management of trusting
 A processual and embedded exploration

18. Marta Gasparin
 Management of design as a translation process

19. Kåre Moberg
 Assessing the Impact of Entrepreneurship Education
 From ABC to PhD

20. Alexander Cole
 Distant neighbors
 Collective learning beyond the cluster

21. Martin Møller Boje Rasmussen
 Is Competitiveness a Question of Being Alike?
 How the United Kingdom, Germany and Denmark Came to Compete through their Knowledge Regimes from 1993 to 2007

22. Anders Ravn Sørensen
 Studies in central bank legitimacy, currency and national identity
 Four cases from Danish monetary history

23. Nina Bellak
 Can Language be Managed in International Business?
 Insights into Language Choice from a Case Study of Danish and Austrian Multinational Corporations (MNCs)

24. Rikke Kristine Nielsen
 Global Mindset as Managerial Meta-competence and Organizational Capability: Boundary-crossing Leadership Cooperation in the MNC
 The Case of ‘Group Mindset’ in Solar A/S.

25. Rasmus Koss Hartmann
 User Innovation inside government
 Towards a critically performative foundation for inquiry
26. Kristian Gylling Olesen
Flertydig og emergerende ledelse i folkeskolen
Et aktør-netværksteoretisk ledelses-studie af politiske evalueringsreformers betydning for ledelse i den danske folkeskole

27. Troels Riis Larsen
Kampen om Danmarks omdømme 1945-2010
Omdømmearbejde og omdømmepolitik

28. Klaus Majgaard
Jagten på autenticitet i offentlig styring

29. Ming Hua Li
Institutional Transition and Organizational Diversity: Differentiated internationalization strategies of emerging market state-owned enterprises

30. Sofie Blinkenberg Federspiel
IT, organisation og digitalisering: Institutionelt arbejde i den kommunale digitaliseringsproces

31. Elvi Weinreich
Hvilke offentlige lederes er der brug for når velfærdstænkningen flytter sig – er Diplomuddannelsens lederprofil svaret?

32. Ellen Mølgaard Korsager
Self-conception and image of context in the growth of the firm – A Penrosian History of Fiberline Composites

33. Else Skjold
The Daily Selection

34. Marie Louise Conradsen
The Cancer Centre That Never Was
The Organisation of Danish Cancer Research 1949-1992

35. Virgilio Failla
Three Essays on the Dynamics of Entrepreneurs in the Labor Market

36. Nicky Nedergaard
Brand-Based Innovation
Relational Perspectives on Brand Logics and Design Innovation Strategies and Implementation

37. Mads Gjedsted Nielsen
Essays in Real Estate Finance

38. Kristin Martina Brandl
Process Perspectives on Service Offshoring

39. Mia Rosa Koss Hartmann
In the gray zone
With police in making space for creativity

40. Karen Ingerslev
Healthcare Innovation under The Microscope
Framing Boundaries of Wicked Problems

41. Tim Neerup Themsen
Risk Management in large Danish public capital investment programmes

2015

1. Jakob Ion Wille
Film som design
Design af levende billeder i film og tv-serier

2. Christiane Mossin
Interzones of Law and Metaphysics
Hierarchies, Logics and Foundations of Social Order seen through the Prism of EU Social Rights

3. Thomas Tøth
TRUSTWORTHINESS: ENABLING GLOBAL COLLABORATION
An Ethnographic Study of Trust, Distance, Control, Culture and Boundary Spanning within Offshore Outsourcing of IT Services

4. Steven Højlund
Evaluation Use in Evaluation Systems – The Case of the European Commission
5. Julia Kirch Kirkegaard
AMBIGUOUS WINDS OF CHANGE – OR FIGHTING AGAINST WINDMILLS IN CHINESE WIND POWER
A CONSTRUCTIVIST INQUIRY INTO CHINA’S PRAGMATICS OF GREEN MARKETISATION MAPPING CONTROVERSIES OVER A POTENTIAL TURN TO QUALITY IN CHINESE WIND POWER

6. Michelle Carol Antero

7. Mathew Abraham
New Cooperativism: A study of emerging producer organisations in India

8. Stine Hedegaard
Sustainability-Focused Identity: Identity work performed to manage, negotiate and resolve barriers and tensions that arise in the process of constructing or organizational identity in a sustainability context

9. Cecilie Glerup
Organizing Science in Society – the conduct and justification of responsible research

10. Allan Salling Pedersen
Implementering af ITIL® IT-governance - når best practice konflikter med kulturen Lösning af implementerings-problemer gennem anvendelse af kendte CSF i et aktionsforskningsforløb.

11. Nihat Misir
A Real Options Approach to Determining Power Prices

12. Mamdouh Medhat
MEASURING AND PRICING THE RISK OF CORPORATE FAILURES

13. Rina Hansen
Toward a Digital Strategy for Omnichannel Retailing

14. Eva Pallesen
In the rhythm of welfare creation
A relational processual investigation moving beyond the conceptual horizon of welfare management

15. Gouya Harirchi
In Search of Opportunities: Three Essays on Global Linkages for Innovation

16. Lotte Holck
Embedded Diversity: A critical ethnographic study of the structural tensions of organizing diversity

17. Jose Daniel Balarezo
Learning through Scenario Planning

18. Louise Pram Nielsen
Knowledge dissemination based on terminological ontologies. Using eye tracking to further user interface design.

19. Sofie Dam
PUBLIC-PRIVATE PARTNERSHIPS FOR INNOVATION AND SUSTAINABILITY TRANSFORMATION
An embedded, comparative case study of municipal waste management in England and Denmark

20. Ulrik Hartmyer Christiansen
Following the Content of Reported Risk Across the Organization

21. Guro Refsum Sanden
Language strategies in multinational corporations. A cross-sector study of financial service companies and manufacturing companies.

22. Linn Gevoll
Designing performance management for operational level
- A closer look on the role of design choices in framing coordination and motivation
<p>| 23. | Frederik Larsen | Objects and Social Actions – on Second-hand Valuation Practices |
| 26. | Mie Plotnikof | Challenges of Collaborative Governance An Organizational Discourse Study of Public Managers' Struggles with Collaboration across the Daycare Area |
| 27. | Christian Garmann Johnsen | Who Are the Post-Bureaucrats? A Philosophical Examination of the Creative Manager, the Authentic Leader and the Entrepreneur |
| 28. | Jacob Brogaard-Kay | Constituting Performance Management A field study of a pharmaceutical company |
| 29. | Rasmus Ploug Jenle | Engineering Markets for Control: Integrating Wind Power into the Danish Electricity System |
| 31. | Morten Grynings | TRUST AND TRANSPARENCY FROM AN ALIGNMENT PERSPECTIVE |
| 32. | Peter Andreas Norn | Byregimer og styrengavne: Politisk lederskab af store byudviklingsprojekter |
| 33. | Milan Miric | Essays on Competition, Innovation and Firm Strategy in Digital Markets |
| 34. | Sanne K. Hjordrup | The Value of Talent Management Rethinking practice, problems and possibilities |
| 35. | Johanna Sax | Strategic Risk Management – Analyzing Antecedents and Contingencies for Value Creation |
| 36. | Pernille Rydén | Strategic Cognition of Social Media |
| 37. | Mimmi Sjöklint | The Measurable Me - The Influence of Self-tracking on the User Experience |
| 38. | Juan Ignacio Staricco | Towards a Fair Global Economic Regime? A critical assessment of Fair Trade through the examination of the Argentine wine industry |
| 39. | Marie Henriette Madsen | Emerging and temporary connections in Quality work |
| 41. | Carsten Scheibye | Enactment of the Organizational Cost Structure in Value Chain Configuration A Contribution to Strategic Cost Management |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Signe Sofie Dyrby</td>
<td>Enterprise Social Media at Work</td>
</tr>
<tr>
<td>2.</td>
<td>Dorte Boesby Dahl</td>
<td>The making of the public parking attendant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirt, aesthetics and inclusion in public service work</td>
</tr>
<tr>
<td>3.</td>
<td>Verena Girschik</td>
<td>Realizing Corporate Responsibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positioning and Framing in Nascent Institutional Change</td>
</tr>
<tr>
<td>4.</td>
<td>Anders Ørding Olsen</td>
<td>IN SEARCH OF SOLUTIONS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inertia, Knowledge Sources and Diversity in Collaborative Problem-solving</td>
</tr>
<tr>
<td>5.</td>
<td>Pernille Steen Pedersen</td>
<td>Udkast til et nyt copingbegreb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En kvalifikation af ledelsesmuligheder for at forebygge sygefravær ved psykiske problemer</td>
</tr>
<tr>
<td>6.</td>
<td>Kerli Kant Hvass</td>
<td>Weaving a Path from Waste to Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exploring fashion industry business models and the circular economy</td>
</tr>
<tr>
<td>8.</td>
<td>Mikkel Mouritz Marfelt</td>
<td>The chameleon workforce: Assembling and negotiating the content of a workforce</td>
</tr>
<tr>
<td>9.</td>
<td>Marianne Bertelsen</td>
<td>Aesthetic encounters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rethinking autonomy, space & time in today’s world of art</td>
</tr>
<tr>
<td>10.</td>
<td>Louise Hauberg Wilhelmsen</td>
<td>EU PERSPECTIVES ON INTERNATIONAL COMMERCIAL ARBITRATION</td>
</tr>
<tr>
<td>12.</td>
<td>Mark Bruun</td>
<td>Essays on Earnings Predictability</td>
</tr>
<tr>
<td>13.</td>
<td>Tor Bøe-Lillegraven</td>
<td>BUSINESS PARADOXES, BLACK BOXES, AND BIG DATA: BEYOND ORGANIZATIONAL AMBIDEXTERTY</td>
</tr>
<tr>
<td>15.</td>
<td>Maj Lervad Grasten</td>
<td>Rule of Law or Rule by Lawyers?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On the Politics of Translation in Global Governance</td>
</tr>
<tr>
<td>16.</td>
<td>Lene Granzau Juel-Jacobsen</td>
<td>SUPERMARKEDETS MODUS OPERANDI – en hverdagssociologisk undersøgelse af forholdet mellem rum og handlen og understøtte relationsopbygning?</td>
</tr>
<tr>
<td>17.</td>
<td>Christine Thalsgård Henriques</td>
<td>In search of entrepreneurial learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Towards a relational perspective on incubating practices?</td>
</tr>
<tr>
<td>18.</td>
<td>Patrick Bennett</td>
<td>Essays in Education, Crime, and Job Displacement</td>
</tr>
<tr>
<td>19.</td>
<td>Søren Korsgaard</td>
<td>Payments and Central Bank Policy</td>
</tr>
<tr>
<td>21.</td>
<td>Elizabeth Benedict Christensen</td>
<td>The Constantly Contingent Sense of Belonging of the 1.5 Generation Undocumented Youth An Everyday Perspective</td>
</tr>
</tbody>
</table>
22. Lasse J. Jessen
Essays on Discounting Behavior and Gambling Behavior

23. Kalle Johannes Rose
Når stifterviljen dør...
Et retsøkonomisk bidrag til 200 års juridisk konflikt om ejendomsretten

24. Andreas Søeborg Kirkedal
Danish Stød and Automatic Speech Recognition

25. Ida Lunde Jørgensen
Institutions and Legitimations in Finance for the Arts

26. Olga Rykov Ibsen
An empirical cross-linguistic study of directives: A semiotic approach to the sentence forms chosen by British, Danish and Russian speakers in native and ELF contexts

27. Desi Volker
Understanding Interest Rate Volatility

28. Angeli Elizabeth Weller
Practice at the Boundaries of Business Ethics & Corporate Social Responsibility

29. Ida Danneskiold-Samsøe
Levende læring i kunstneriske organisationer
En undersøgelse af læringsprocesser mellem projekt og organisation på Aarhus Teater

30. Leif Christensen
Quality of information – The role of internal controls and materiality

31. Olga Zarzecka
Tie Content in Professional Networks

32. Henrik Mahncke
De store gaver - Filantropiens gensidighedsrelationer i teori og praksis

33. Carsten Lund Pedersen
Using the Collective Wisdom of Frontline Employees in Strategic Issue Management

34. Yun Liu
Essays on Market Design
TITLER I ATV PH.D.-SERIEN

1992
1. Niels Kornum
 Servicesamkørsel – organisation, økonomi og planlægningsmetode

1995
2. Verner Worm
 Nordiske virksomheder i Kina
 Kulturspecifikke interaktionsrelationer ved nordiske virksomhedsetableringer i Kina

1999
3. Mogens Bjerre
 Key Account Management of Complex Strategic Relationships
 An Empirical Study of the Fast Moving Consumer Goods Industry

2000
4. Lotte Darsø
 Innovation in the Making Interaction Research with heterogeneous Groups of Knowledge Workers creating new Knowledge and new Leads

2001
5. Peter Hobolt Jensen
 Managing Strategic Design Identities
 The case of the Lego Developer Network

2002
6. Peter Lohmann
 The Deleuzian Other of Organizational Change – Moving Perspectives of the Human

7. Anne Marie Jess Hansen
 To lead from a distance: The dynamic interplay between strategy and strategizing – A case study of the strategic management process

2003
8. Lotte Henriksen
 Videndeling
 – om organisatoriske og ledelsesmæssige udfordringer ved videndeling i praksis

9. Niels Christian Nickelsen
 Arrangements of Knowing: Coordinating Procedures Tools and Bodies in Industrial Production – a case study of the collective making of new products

2005
10. Carsten Ørts Hansen
 Konstruktion af ledelsesteknologier og effektivitet

TITLER I DBA PH.D.-SERIEN

2007
1. Peter Kastrup-Misir
 Endeavoring to Understand Market Orientation – and the concomitant co-mutation of the researched, the researcher, the research itself and the truth

2009
1. Torkild Leo Thellefsen
 Fundamental Signs and Significance effects
 A Semiotic outline of Fundamental Signs, Significance-effects, Knowledge Profiling and their use in Knowledge Organization and Branding

2. Daniel Ronzani
 When Bits Learn to Walk Don’t Make Them Trip. Technological Innovation and the Role of Regulation by Law in Information Systems Research: the Case of Radio Frequency Identification (RFID)

2010
1. Alexander Carnera
 Magten over livet og livet som magt
 Studier i den biopolitiske ambivalens