Stability and Similarity of Clusters under Reduced Response Data

OPEN ARCHIVE

Union Jack
Dannebrog

Stability and Similarity of Clusters under Reduced Response Data

Show full item record

Title: Stability and Similarity of Clusters under Reduced Response Data
Author: Litong-Palima, Marisciel; Albers, Kristoffer Jon; Glückstad, Fumiko Kano
Abstract: This study presents a validated recommendation on how to shorten the surveys while still obtaining segmentation-based insights that are consistent with the analysis of the full length version of the same survey. We use latent class analysis to cluster respondents based on their responses to a survey on human values. We first define the clustering performance based on stability and similarity measures for ten random subsamples relative to the complete set. We find foremost that the use of true binary scale can potentially reduce survey completion time while still providing sufficient response information to derive clusters with characteristics that resemble those obtained with the full Likert scale version. The main motivation for this study is to provide a baseline performance of a standard clustering tool for cases when it is preferable or necessary to limit survey scope, in consideration of issues like respondent fatigue or resource constraints.
URI: http://hdl.handle.net/10398/9652
Date: 2018-08-08
Notes: Paper presented at the 32nd Annual Conference of the Japanese Society for Artificial Intelligence (JSAI2018). June 5-8 2018, Kagoshima, Japan

Creative Commons License This work is licensed under a Creative Commons License.

Files Size Format View
Litong-Palima_Albers_Gluckstad.pdf 354.9Kb PDF View/Open Paper

This item appears in the following Collection(s)

Show full item record